Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Epigenetics Chromatin ; 15(1): 22, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650626

RESUMO

BACKGROUND: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. RESULTS: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. CONCLUSION: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.


Assuntos
Cromatina , Trypanosoma cruzi , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Proteômica/métodos , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
2.
Front Cell Infect Microbiol ; 11: 642271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777851

RESUMO

Trypanosomatids have a cytoskeleton arrangement that is simpler than what is found in most eukaryotic cells. However, it is precisely organized and constituted by stable microtubules. Such microtubules compose the mitotic spindle during mitosis, the basal body, the flagellar axoneme and the subpellicular microtubules, which are connected to each other and also to the plasma membrane forming a helical arrangement along the central axis of the parasite cell body. Subpellicular, mitotic and axonemal microtubules are extensively acetylated in Trypanosoma cruzi. Acetylation on lysine (K) 40 of α-tubulin is conserved from lower eukaryotes to mammals and is associated with microtubule stability. It is also known that K40 acetylation occurs significantly on flagella, centrioles, cilia, basal body and the mitotic spindle in eukaryotes. Several tubulin posttranslational modifications, including acetylation of K40, have been cataloged in trypanosomatids, but the functional importance of these modifications for microtubule dynamics and parasite biology remains largely undefined. The primary tubulin acetyltransferase was recently identified in several eukaryotes as Mec-17/ATAT, a Gcn5-related N-acetyltransferase. Here, we report that T. cruzi ATAT acetylates α-tubulin in vivo and is capable of auto-acetylation. TcATAT is located in the cytoskeleton and flagella of epimastigotes and colocalizes with acetylated α-tubulin in these structures. We have expressed TcATAT with an HA tag using the inducible vector pTcINDEX-GW in T. cruzi. Over-expression of TcATAT causes increased levels of the alpha tubulin acetylated species, induces morphological and ultrastructural defects, especially in the mitochondrion, and causes a halt in the cell cycle progression of epimastigotes, which is related to an impairment of the kinetoplast division. Finally, as a result of TcATAT over-expression we observed that parasites became more resistant to microtubule depolymerizing drugs. These results support the idea that α-tubulin acetylation levels are finely regulated for the normal progression of T. cruzi cell cycle.


Assuntos
Trypanosoma cruzi , Tubulina (Proteína) , Acetilação , Animais , Divisão Celular , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Trypanosoma cruzi/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Sci Rep ; 11(1): 9210, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911164

RESUMO

Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.


Assuntos
Bactérias/metabolismo , Replicação do DNA , DNA de Cinetoplasto/genética , DNA de Protozoário/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Trypanosomatina/genética , Divisão Celular , Núcleo Celular , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/metabolismo , Mitocôndrias/metabolismo , Proteínas de Protozoários/metabolismo , Simbiose , Trypanosomatina/metabolismo , Trypanosomatina/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-32083023

RESUMO

Glycosomes are peroxisome-related organelles that have been identified in kinetoplastids and diplonemids. The hallmark of glycosomes is their harboring of the majority of the glycolytic enzymes. Our biochemical studies and proteome analysis of Trypanosoma cruzi glycosomes have located, in addition to enzymes of the glycolytic pathway, enzymes of several other metabolic processes in the organelles. These analyses revealed many aspects in common with glycosomes from other trypanosomatids as well as features that seem specific for T. cruzi. Their enzyme content indicates that T. cruzi glycosomes are multifunctional organelles, involved in both several catabolic processes such as glycolysis and anabolic ones. Specifically discussed in this minireview are the cross-talk between glycosomal metabolism and metabolic processes occurring in other cell compartments, and the importance of metabolite translocation systems in the glycosomal membrane to enable the coordination between the spatially separated processes. Possible mechanisms for metabolite translocation across the membrane are suggested by proteins identified in the organelle's membrane-homologs of the ABC and MCF transporter families-and the presence of channels as inferred previously from the detection of channel-forming proteins in glycosomal membrane preparations from the related parasite T. brucei. Together, these data provide insight in the way in which different parts of T. cruzi metabolism, although uniquely distributed over different compartments, are integrated and regulated. Moreover, this information reveals opportunities for the development of drugs against Chagas disease caused by these parasites and for which currently no adequate treatment is available.


Assuntos
Doença de Chagas , Trypanosoma brucei brucei , Trypanosoma cruzi , Doença de Chagas/metabolismo , Glicólise , Humanos , Microcorpos , Organelas
5.
Sci Rep ; 9(1): 192, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655631

RESUMO

Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Proteínas HMGB/metabolismo , Trypanosoma cruzi , Pontos de Checagem do Ciclo Celular , Nucléolo Celular , Citocinese , Proteínas HMGB/farmacologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma cruzi/ultraestrutura , Virulência
6.
Parasit Vectors ; 11(1): 83, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409544

RESUMO

BACKGROUND: Trypanosoma cruzi uses several strategies to survive in different hosts. A key step in the life-cycle of this parasite is metacyclogenesis, which involves various morphological, biochemical, and genetic changes that induce the differentiation of non-pathogenic epimastigotes into pathogenic metacyclic trypomastigotes. During metacyclogenesis, T. cruzi displays distinct morphologies and ultrastructural features, which have not been fully characterized. RESULTS: We performed a temporal description of metacyclogenesis using different microscopy techniques that resulted in the identification of three intermediate forms of T. cruzi: intermediates I, II and III. Such classification was based on morphological and ultrastructural aspects as the location of the kinetoplast in relation to the nucleus, kinetoplast shape and kDNA topology. Furthermore, we suggested that metacyclic trypomastigotes derived from intermediate forms that had already detached from the substrate. We also found that changes in the kinetoplast morphology and kDNA arrangement occurred only after the repositioning of this structure toward the posterior region of the cell body. These changes occurred during the later stages of differentiation. In contrast, changes in the nucleus shape began as soon as metacyclogenesis was initiated, while changes in nuclear ultrastructure, such as the loss of the nucleolus, were only observed during later stages of differentiation. Finally, we found that kDNA networks of distinct T. cruzi forms present different patterns of DNA topology. CONCLUSIONS: Our study of T. cruzi metacyclogenesis revealed important aspects of the morphology and ultrastructure of this intriguing cell differentiation process. This research expands our understanding of this parasite's fascinating life-cycle. It also highlights the study of T. cruzi as an important and exciting model system for investigating diverse aspects of cellular, molecular, and evolutionary biology.


Assuntos
Diferenciação Celular , Organelas/ultraestrutura , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA