Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(36): e2206327119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037380

RESUMO

Cerebral malaria (CM) is a life-threatening form of Plasmodium falciparum infection caused by brain inflammation. Brain endothelium dysfunction is a hallmark of CM pathology, which is also associated with the activation of the type I interferon (IFN) inflammatory pathway. The molecular triggers and sensors eliciting brain type I IFN cellular responses during CM remain largely unknown. We herein identified the stimulator of interferon response cGAMP interactor 1 (STING1) as the key innate immune sensor that induces Ifnß1 transcription in the brain of mice infected with Plasmodium berghei ANKA (Pba). This STING1/IFNß-mediated response increases brain CXCL10 governing the extent of brain leukocyte infiltration and blood-brain barrier (BBB) breakdown, and determining CM lethality. The critical role of brain endothelial cells (BECs) in fueling type I IFN-driven brain inflammation was demonstrated in brain endothelial-specific IFNß-reporter and STING1-deficient Pba-infected mice, which were significantly protected from CM lethality. Moreover, extracellular particles (EPs) released from Pba-infected erythrocytes activated the STING1-dependent type I IFN response in BECs, a response requiring intracellular acidification. Fractionation of the EPs enabled us to identify a defined fraction carrying hemoglobin degradation remnants that activates STING1/IFNß in the brain endothelium, a process correlated with heme content. Notably, stimulation of STING1-deficient BECs with heme, docking experiments, and in vitro binding assays unveiled that heme is a putative STING1 ligand. This work shows that heme resultant from the parasite heterotrophic activity operates as an alarmin, triggering brain endothelial inflammatory responses via the STING1/IFNß/CXCL10 axis crucial to CM pathogenesis and lethality.


Assuntos
Encéfalo , Heme , Interferon beta , Malária Cerebral , Proteínas de Membrana , Animais , Encéfalo/parasitologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Endotélio/imunologia , Endotélio/parasitologia , Heme/metabolismo , Interferon beta/imunologia , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Plasmodium berghei/metabolismo , Ativação Transcricional/imunologia
2.
Neurochem Res ; 49(7): 1823-1837, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727985

RESUMO

Methylglyoxal (MG) is considered a classical biomarker of diabetes mellitus and its comorbidities. However, a role for this compound in exacerbated immune responses, such as septicemia, is being increasingly observed and requires clarification, particularly in the context of neuroinflammatory responses. Herein, we used two different approaches (in vivo and acute hippocampal slice models) to investigate MG as a biomarker of neuroinflammation and the neuroimmunometabolic shift to glycolysis in lipopolysaccharide (LPS) inflammation models. Our data reinforce the hypothesis that LPS-induced neuroinflammation stimulates the cerebral innate immune response by increasing IL-1ß, a classical pro-inflammatory cytokine, and the astrocyte reactive response, via elevating S100B secretion and GFAP levels. Acute neuroinflammation promotes an early neuroimmunometabolic shift to glycolysis by elevating glucose uptake, lactate release, PFK1, and PK activities. We observed high serum and cerebral MG levels, in association with a reduction in glyoxalase 1 detoxification activity, and a close correlation between serum and hippocampus MG levels with the systemic and neuroinflammatory responses to LPS. Findings strongly suggest a role for MG in immune responses.


Assuntos
Biomarcadores , Hipocampo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Aldeído Pirúvico , Aldeído Pirúvico/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Biomarcadores/metabolismo , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Glicólise/efeitos dos fármacos , Interleucina-1beta/metabolismo , Inflamação/metabolismo , Inflamação/induzido quimicamente , Proteína Glial Fibrilar Ácida/metabolismo , Lactoilglutationa Liase/metabolismo , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos
3.
Neurochem Res ; 49(3): 732-743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063948

RESUMO

Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/ß receptor knockout (IFNα/ßR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/ßR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.


Assuntos
Astrócitos , Sinvastatina , Camundongos , Animais , Astrócitos/metabolismo , Sinvastatina/farmacologia , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Anti-Inflamatórios/farmacologia , Colesterol/metabolismo , Células Cultivadas
4.
Neurochem Res ; 49(7): 1851-1862, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733521

RESUMO

Alzheimer's disease (AD) is an age-dependent neurodegenerative disease that is typically sporadic and has a high social and economic cost. We utilized the intracerebroventricular administration of streptozotocin (STZ), an established preclinical model for sporadic AD, to investigate hippocampal astroglial changes during the first 4 weeks post-STZ, a period during which amyloid deposition has yet to occur. Astroglial proteins aquaporin 4 (AQP-4) and connexin-43 (Cx-43) were evaluated, as well as claudins, which are tight junction (TJ) proteins in brain barriers, to try to identify changes in the glymphatic system and brain barrier during the pre-amyloid phase. Glial commitment, glucose hypometabolism and cognitive impairment were characterized during this phase. Astroglial involvement was confirmed by an increase in glial fibrillary acidic protein (GFAP); concurrent proteolysis was also observed, possibly mediated by calpain. Levels of AQP-4 and Cx-43 were elevated in the fourth week post-STZ, possibly accelerating the clearance of extracellular proteins, since these proteins actively participate in the glymphatic system. Moreover, although we did not see a functional disruption of the blood-brain barrier (BBB) at this time, claudin 5 (present in the TJ of the BBB) and claudin 2 (present in the TJ of the blood-cerebrospinal fluid barrier) were reduced. Taken together, data support a role for astrocytes in STZ brain damage, and suggest that astroglial dysfunction accompanies or precedes neuronal damage in AD.


Assuntos
Doença de Alzheimer , Aquaporina 4 , Astrócitos , Estreptozocina , Astrócitos/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Aquaporina 4/metabolismo , Conexina 43/metabolismo , Barreira Hematoencefálica/metabolismo , Água/metabolismo , Hipocampo/metabolismo , Ratos Wistar , Ratos , Modelos Animais de Doenças
5.
Nutr Neurosci ; : 1-13, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386276

RESUMO

Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.

6.
Clin Lab ; 70(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623658

RESUMO

BACKGROUND: Identifying clinical characteristics and risk factors, comorbid conditions, and complications arising from SARS-CoV-2 infection is important to predict the progression to more severe forms of the disease among hospitalized individuals to enable timely intervention and to prevent fatal outcomes. The aim of the study is to assess the possible role of the neutrophil/lymphocyte ratio (NLR) as a biomarker of the risk of death in patients with comorbidities hospitalized with COVID-19 in a tertiary hospital in southern Brazil. METHODS: This is a prospective cohort study on patients with SARS-CoV-2 infection admitted to a hospital in the metropolitan region of Porto Alegre from September 2020 to March 2022. RESULTS: The sample consisted of 185 patients with associated comorbidities, namely, hypertension, diabetes mellitus, obesity, cardiovascular, pulmonary, and renal diseases, hospitalized with COVID-19. Of these, 78 died and 107 were discharged alive. The mean age was 66.5 years for the group that died and 60.1 years for the group discharged. Statistical analysis revealed that a difference greater than or equal to 1.55 in the NLR, from hospitalization to the 5th day, was associated with a relative risk of death greater than 2. CONCLUSIONS: Measuring a simple inflammatory marker such as NLR may improve the risk stratification of comorbid patients with COVID-19 and can be considered a useful biomarker.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/epidemiologia , SARS-CoV-2 , Neutrófilos , Estudos Prospectivos , Linfócitos , Biomarcadores , Estudos Retrospectivos
7.
Angew Chem Int Ed Engl ; 63(9): e202316579, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38179790

RESUMO

Sulfenyl imidinium salts are a virtually unexplored class of intermediates in organic chemistry. Herein, we demonstrate how sulfonium rearrangements can be deployed to access these versatile synthetic intermediates, bearing three contiguous (and congested) stereogenic centers, with high levels of selectivity. The synthetic value of the scaffold was unraveled by selective transformations into a range of building blocks, including 1,4-dicarbonyl derivatives and sulfonolactones.

8.
Glia ; 71(8): 1791-1803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36866453

RESUMO

Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/fisiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Neuroglia/metabolismo , Sistema Nervoso Central/metabolismo , Encéfalo/metabolismo
9.
PLoS Pathog ; 17(8): e1009772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352039

RESUMO

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Substituição de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Mutação/genética , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
J Neurovirol ; 29(5): 577-587, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37501054

RESUMO

Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.


Assuntos
COVID-19 , Humanos , Animais , Ratos , COVID-19/genética , Doenças Neuroinflamatórias , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Homeostase , Hipocampo
11.
Neurochem Res ; 48(11): 3447-3456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464227

RESUMO

Evidence indicates that transcranial direct current stimulation (tDCS) provides therapeutic benefits in different situations, such as epilepsy, depression, inflammatory and neuropathic pain. Despite the increasing use of tDCS, its cellular and molecular basis remains unknown. Astrocytes display a close functional and structural relationship with neurons and have been identified as mediators of neuroprotection in tDCS. Considering the importance of hippocampal glutamatergic neurotransmission in nociceptive pathways, we decided to investigate short-term changes in the hippocampal astrocytes of rats subjected to tDCS, evaluating specific cellular markers (GFAP and S100B), as well as markers of astroglial activity; glutamate uptake, glutamine synthesis by glutamine synthetase (GS) and glutathione content. Data clearly show that a single session of tDCS increases the pain threshold elicited by mechanical and thermal stimuli, as evaluated by von Frey and hot plate tests, respectively. These changes involve inflammatory and astroglial neurochemical changes in the hippocampus, based on specific changes in cell markers, such as S100B and GS. Alterations in S100B were also observed in the cerebrospinal fluid of tDCS animals and, most importantly, specific functional changes (increased glutamate uptake and increased GS activity) were detected in hippocampal astrocytes. These findings contribute to a better understanding of tDCS as a therapeutic strategy for nervous disorders and reinforce the importance of astrocytes as therapeutic targets.


Assuntos
Epilepsia , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Astrócitos/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Ácido Glutâmico/metabolismo , Glutamato-Amônia Ligase/metabolismo
12.
Mol Cell Biochem ; 478(6): 1205-1216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36272012

RESUMO

Aging is intrinsically related to metabolic changes and characterized by the accumulation of oxidative and inflammatory damage, as well as alterations in gene expression and activity of several signaling pathways, which in turn impact on homeostatic responses of the body. Hypothalamus is a brain region most related to these responses, and increasing evidence has highlighted a critical role of astrocytes in hypothalamic homeostatic functions, particularly during aging process. The purpose of this study was to investigate the in vitro effects of a chronic treatment with resveratrol (1 µM during 15 days, which was replaced once every 3 days), a recognized anti-inflammatory and antioxidant molecule, in primary hypothalamic astrocyte cultures obtained from aged rats (24 months old). We observed that aging process changes metabolic, oxidative, inflammatory, and senescence parameters, as well as glial markers, while long-term resveratrol treatment prevented these effects. In addition, resveratrol upregulated key signaling pathways associated with cellular homeostasis, including adenosine receptors, nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and phosphoinositide 3-kinase (PI3K). Our data corroborate the glioprotective effect of resveratrol in aged hypothalamic astrocytes, reinforcing the beneficial role of resveratrol in the aging process.


Assuntos
Astrócitos , Fosfatidilinositol 3-Quinases , Ratos , Animais , Resveratrol/farmacologia , Astrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Hipotálamo/metabolismo , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia
13.
Parasitol Res ; 122(3): 729-737, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36694092

RESUMO

Cerebral malaria (CM) is a severe neurological condition caused by Plasmodium falciparum. Disruption of the brain-blood barrier (BBB) is a key pathological event leading to brain edema and vascular leakage in both humans and in the mouse model of CM. Interactions of brain endothelial cells with infected red blood cells (iRBCs) and with circulating inflammatory mediators and immune cells contribute to BBB dysfunction in CM. Adjunctive therapies for CM aim at preserving the BBB to prevent neurologic deficits. Experimental animal and cellular models are essential to develop new therapeutic strategies. However, in mice, the disease develops rapidly, which offers a very narrow time window for testing the therapeutic potential of drugs acting in the BBB. Here, we establish a brain endothelial cell barrier whose disturbance can be monitored by several parameters. Using this system, we found that incubation with iRBCs and with extracellular particles (EPs) released by iRBCs changes endothelial cell morphology, decreases the tight junction protein zonula occludens-1 (ZO-1), increases the gene expression of the intercellular adhesion molecule 1 (ICAM-1), and induces a significant reduction in transendothelial electrical resistance (TEER) with increased permeability. We propose this in vitro experimental setup as a straightforward tool to investigate molecular interactions and pathways causing endothelial barrier dysfunction and to test compounds that may target BBB and be effective against CM. A pre-selection of the effective compounds that strengthen the resistance of the brain endothelial cell barrier to Plasmodium-induced blood factors in vitro may increase the likelihood of their efficacy in preclinical disease mouse models of CM and in subsequent clinical trials with patients.


Assuntos
Células Endoteliais , Malária Cerebral , Humanos , Animais , Camundongos , Encéfalo/metabolismo , Barreira Hematoencefálica , Malária Cerebral/tratamento farmacológico , Malária Cerebral/metabolismo , Plasmodium falciparum/fisiologia
14.
J Sports Sci ; 41(2): 151-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37102423

RESUMO

The present longitudinal meta-analysis aimed to estimate the growth curves and age at peak height velocity (PHV) in young male athletes, considering anthropometric data from available longitudinal studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, studies with repeated measurements in young male athletes were identified from searches across four databases (MEDLINE, SPORTDiscus, Web of Science, and SCOPUS). Estimations were based on multilevel polynomial models using a fully Bayesian framework. After a full-text screening of 317 studies meeting the eligibility criteria, 31 studies were considered. Studies were excluded mainly due to study design, repeated reporting, and incomplete reporting of the outcomes. Of the 31 studies analysed, 26 (84%) focused on young European athletes. The average age at PHV for the total sample of studies with young athletes was 13.1 years (90% credible interval: 12.9; 13.4). When considering data by sport, there was substantial variation in the age at PHV estimates (range: 12.4 to 13.5 years). As most studies in the meta-analysis focused on young European football players (52%), predictions for young athletes from other sports may be limited. The age at PHV in the available data occurred earlier than in general paediatric populations.


Assuntos
Futebol , Esportes , Humanos , Masculino , Criança , Adolescente , Teorema de Bayes , Atletas , Antropometria
15.
J Craniofac Surg ; 34(4): 1160-1164, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184763

RESUMO

Although neurocognitive impairment has been considered as the main argument for the surgical treatment of craniosynostosis (CS), recent studies reported subtle deficits in neurological function even in operated patients. However, the cause of these deficits remains poorly understood. This systematic review sought to examine the impact of CS on the brain microstructure, mainly on functional connectivity, and comprehensively summarize the clinical and experimental research available on this topic. A systematic review was performed considering the publications of the last 20 years in PubMed and Web of Science, including relevant human and animal studies of the types of brain-microstructure disturbances in CS. Among the 560 papers identified, 11 were selected for analysis. Seven of those were conducted in humans and 4 in animal models. Resting-state functional magnetic resonance imaging, task-based magnetic resonance imaging, and diffusion tensor imaging were the main instruments used to investigate brain connectivity in humans. The main findings were increased connectivity of the posterior segment of cingulum gyri, reduced interconnectivity of the frontal lobes, and reduced diffusivity on diffusion tensor imaging, which were associated with hyperactivity behaviors and poorer performance on neurocognitive tests. Conversely, despite the lack of evidence of brain dysfunction in animal studies, they reported a tendency toward the development of hyperactive behaviors and impairment of neurocognitive function. Skull restriction caused by CS apparently chronically increases the intracranial pressure and produces white matter injuries. The current evidence supports the contention that an early surgical approach could minimize brain-connectivity impairment in this context.


Assuntos
Craniossinostoses , Imagem de Tensor de Difusão , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Craniossinostoses/patologia
16.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068900

RESUMO

S100B, a homodimeric Ca2+-binding protein, is produced and secreted by astrocytes, and its extracellular levels have been used as a glial marker in brain damage and neurodegenerative and psychiatric diseases; however, its mechanism of secretion is elusive. We used primary astrocyte cultures and calcium measurements from real-time fluorescence microscopy to investigate the role of intracellular calcium in S100B secretion. In addition, the dimethyl sulfoxide (DMSO) effect on S100B was investigated in vitro and in vivo using Wistar rats. We found that DMSO, a widely used vehicle in biological assays, is a powerful S100B secretagogue, which caused a biphasic response of Ca2+ mobilization. Our data show that astroglial S100B secretion is triggered by the increase in intracellular Ca2+ and indicate that this increase is due to Ca2+ mobilization from the endoplasmic reticulum. Also, blocking plasma membrane Ca2+ channels involved in the Ca2+ replenishment of internal stores decreased S100B secretion. The DMSO-induced S100B secretion was confirmed in vivo and in ex vivo hippocampal slices. Our data support a nonclassic vesicular export of S100B modulated by Ca2+, and the results might contribute to understanding the mechanism underlying the astroglial release of S100B.


Assuntos
Astrócitos , Dimetil Sulfóxido , Ratos , Animais , Ratos Wistar , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/metabolismo , Astrócitos/metabolismo , Colforsina/farmacologia , Secretagogos/farmacologia , Cálcio/metabolismo , Fatores de Crescimento Neural/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Retículo Endoplasmático/metabolismo , Células Cultivadas
17.
Waste Manag Res ; 41(4): 828-838, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36404755

RESUMO

With an increase in climate and environmental issues awareness, the use of waste of various types has gained increased visibility, acknowledging that wastes are any and all kinds of unused materials from the production process or after using the final product for its intended purpose. The use of wastes to produce alternative cement materials is an alternative to reduce the use of natural resources. Forestry residues, ash, plastic residues, LDPE/Al composites, and geopolymer materials are some of the possible residues used for the partial replacement of cement materials. The objective of this research is to establish how these materials relate to each other, based on a topic review and how they can contribute towards sustainability. The study was performed on several scientific article search engines, in which the keywords 'Carton Packages', 'Wood Waste' and 'Geopolymers' were inserted, and then a refinement was carried out using the term 'Cement Materials'. Such analysis allowed the generation of information related to publication numbers, countries, research areas, as well as publication types. Co-authorship networks of organization, co-citation of references, co-occurrence of keywords, among others, were also plotted. Through this bibliometric analysis, it was possible to reveal the structure of the research, analyse the developments and predict the future directions for the research regarding the use of residues in the production of sustainable Portland cement composites.


Assuntos
Materiais de Construção
18.
Diabetologia ; 65(5): 861-871, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35190847

RESUMO

AIMS/HYPOTHESIS: Imbalances in glucose metabolism are hallmarks of clinically silent prediabetes (defined as impaired fasting glucose and/or impaired glucose tolerance) representing dysmetabolism trajectories leading to type 2 diabetes. CD26/dipeptidyl peptidase 4 (DPP4) is a clinically proven molecular target of diabetes-controlling drugs but the DPP4 gene control of dysglycaemia is not proven. METHODS: We dissected the genetic control of post-OGTT and insulin release responses by the DPP4 gene in a Portuguese population-based cohort of mainly European ancestry that comprised individuals with normoglycaemia and prediabetes, and in mouse experimental models of Dpp4 deficiency and hyperenergetic diet. RESULTS: In individuals with normoglycaemia, DPP4 single-nucleotide variants governed glycaemic excursions (rs4664446, p=1.63x10-7) and C-peptide release responses (rs2300757, p=6.86x10-5) upon OGTT. Association with blood glucose levels was stronger at 30 min OGTT, but a higher association with the genetic control of insulin secretion was detected in later phases of the post-OGTT response, suggesting that the DPP4 gene directly senses glucose challenges. Accordingly, in mice fed a normal chow diet but not a high-fat diet, we found that, under OGTT, expression of Dpp4 is strongly downregulated at 30 min in the mouse liver. Strikingly, no genetic association was found in prediabetic individuals, indicating that post-OGTT control by DPP4 is abrogated in prediabetes. Furthermore, Dpp4 KO mice provided concordant evidence that Dpp4 modulates post-OGTT C-peptide release in normoglycaemic but not dysmetabolic states. CONCLUSIONS/INTERPRETATION: These results showed the DPP4 gene as a strong determinant of post-OGTT levels via glucose-sensing mechanisms that are abrogated in prediabetes. We propose that impairments in DPP4 control of post-OGTT insulin responses are part of molecular mechanisms underlying early metabolic disturbances associated with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Animais , Glicemia/metabolismo , Peptídeo C/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Secreção de Insulina/genética , Camundongos , Estado Pré-Diabético/metabolismo
19.
J Neuroinflammation ; 19(1): 255, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221097

RESUMO

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1ß and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.


Assuntos
Lipopolissacarídeos , Metformina , Animais , Citocinas/metabolismo , Glucose/metabolismo , Glutamatos/metabolismo , Hipocampo/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lactatos/efeitos adversos , Lactatos/metabolismo , Lipopolissacarídeos/toxicidade , Metformina/farmacologia , Microglia/metabolismo , Minociclina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Ácido Oxâmico/efeitos adversos , Ácido Oxâmico/metabolismo , Proteínas Quinases/metabolismo , Ratos
20.
Cell Mol Neurobiol ; 42(3): 829-846, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33079284

RESUMO

Sulforaphane is a natural compound that presents anti-inflammatory and antioxidant properties, including in the central nervous system (CNS). Astroglial cells are involved in several functions to maintain brain homeostasis, actively participating in the inflammatory response and antioxidant defense systems. We, herein, investigated the potential mechanisms involved in the glioprotective effects of sulforaphane in the C6 astrocyte cell line, when challenged with the inflammogen, lipopolysaccharide (LPS). Sulforaphane prevented the LPS-induced increase in the expression and/or release of pro-inflammatory mediators, possibly due to nuclear factor κB and hypoxia-inducible factor-1α activation. Sulforaphane also modulated the expressions of the Toll-like and adenosine receptors, which often mediate inflammatory processes induced by LPS. Additionally, sulforaphane increased the mRNA levels of nuclear factor erythroid-derived 2-like 2 (Nrf2) and heme oxygenase-1 (HO1), both of which mediate several cytoprotective responses. Sulforaphane also prevented the increase in NADPH oxidase activity and the elevations of superoxide and 3-nitrotyrosine that were stimulated by LPS. In addition, sulforaphane and LPS modulated superoxide dismutase activity and glutathione metabolism. Interestingly, the anti-inflammatory and antioxidant effects of sulforaphane were blocked by HO1 pharmacological inhibition, suggesting its dependence on HO1 activity. Finally, in support of a glioprotective role, sulforaphane prevented the LPS-induced decrease in glutamate uptake, glutamine synthetase activity, and glial-derived neurotrophic factor (GDNF) levels, as well as the augmentations in S100B release and Na+, K+ ATPase activity. To our knowledge, this is the first study that has comprehensively explored the glioprotective effects of sulforaphane on astroglial cells, reinforcing the beneficial effects of sulforaphane on astroglial functionality.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Células Cultivadas , Isotiocianatos/farmacologia , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA