Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(3): 866-872, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205713

RESUMO

A critical bottleneck for the training of large neural networks (NNs) is communication with off-chip memory. A promising mitigation effort consists of integrating crossbar arrays of analogue memories in the Back-End-Of-Line, to store the NN parameters and efficiently perform the required synaptic operations. The "Tiki-Taka" algorithm was developed to facilitate NN training in the presence of device nonidealities. However, so far, a resistive switching device exhibiting all the fundamental Tiki-Taka requirements, which are many programmable states, a centered symmetry point, and low programming noise, was not yet demonstrated. Here, a complementary metal-oxide semiconductor (CMOS)-compatible resistive random access memory (RRAM), showing more than 30 programmable states with low noise and a symmetry point with only 5% skew from the center, is presented for the first time. These results enable generalization of Tiki-Taka training from small fully connected networks to larger long-/short-term-memory types of NN.

2.
Nanotechnology ; 32(1): 012002, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679577

RESUMO

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

3.
Phys Chem Chem Phys ; 21(23): 12150-12162, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31144707

RESUMO

We present a comprehensive first principles study of doped hafnia in order to understand the formation of ferroelectric orthorhombic[001] grains. Assuming that tetragonal grains are present during the early stages of growth, matching plane analysis shows that tetragonal[100] grains can transform into orthorhombic[001] during thermal annealing when they are laterally confined by other grains. We show that among 0%, 2% and 4% Si doping, 4% doping provides the best conditions for the tetragonal[100] → orthorhombic[001] transformation. This also holds for Al doping. We also show that for HfxZr1-xO2, where x = 1.00, 0.75, 0.50, 0.25, and 0.00, the value x = 0.50 provides the most favorable conditions for the desired transformation. In order for this transformation to be preferred over the tetragonal[100] → monoclinic[100] transformation, out-of-plane confinement also needs to be present, as supplied by a top electrode. Our findings illuminate the mechanism that causes ferroelectricity in hafnia-based films and provide an explanation for common experimental observations for the optimal ranges of doping in Si:HfO2, Al:HfO2 and HfxZr1-xO2. We also present model thin film heterostructure computations of Ir/HfO2/Ir stacks in order to isolate the interface effects, which we show to be significant.

4.
Sci Rep ; 13(1): 14963, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697024

RESUMO

Analog hardware-based training provides a promising solution to developing state-of-the-art power-hungry artificial intelligence models. Non-volatile memory hardware such as resistive random access memory (RRAM) has the potential to provide a low power alternative. The training accuracy of analog hardware depends on RRAM switching properties including the number of discrete conductance states and conductance variability. Furthermore, the overall power consumption of the system inversely correlates with the RRAM devices conductance. To study material dependence of these properties, TaOx and HfOx RRAM devices in one-transistor one-RRAM configuration (1T1R) were fabricated using a custom 65 nm CMOS fabrication process. Analog switching performance was studied with a range of initial forming compliance current (200-500 µA) and analog switching tests with ultra-short pulse width (300 ps) was carried out. We report that by utilizing low current during electroforming and high compliance current during analog switching, a large number of RRAM conductance states can be achieved while maintaining low conductance state. While both TaOx and HfOx could be switched to more than 20 distinct states, TaOx devices exhibited 10× lower conductance, which reduces total power consumption for array-level operations. Furthermore, we adopted an analog, fully in-memory training algorithm for system-level training accuracy benchmarking and showed that implementing TaOx 1T1R cells could yield an accuracy of up to 96.4% compared to 97% for the floating-point arithmetic baseline, while implementing HfOx devices would yield a maximum accuracy of 90.5%. Our experimental work and benchmarking approach paves the path for future materials engineering in analog-AI hardware for a low-power environment training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA