Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(7): 2310-2318, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32469522

RESUMO

The aim of the present paper is to study the effect of common excipients on the permeability of atenolol (as drug absorbed mainly by passive diffusion) and rhodamine (as P-glycoprotein substrate). The apparent permeability was measured by an in situ perfusion method in Wistar rats using the closed loop Doluisio's method. Permeability values were characterized in the absence and presence of 18 commonly used excipients. Excipient concentrations were selected based on the amounts in oral immediate release dosage forms, which failed the test during the human bioequivalence studies. Atenolol was studied with and without excipients in the whole small intestine, whereas rhodamine was tested in three different intestinal segments to account for the differential expression of P-glycoprotein, and it was further on tested in the ileum, in the presence of excipients. Atenolol presented higher permeability values when it was administered with colloidal silica, croscarmellose, hydroxypropyl methylcellulose (HPMC), magnesium stearate, MgCO3, poly(ethylene glycol) 400, poly(vinylpyrrolidone), sorbitol, starch, and TiO2 rhodamine showed higher permeability values when it was administered with croscarmellose and HPMC. On the one hand, the mechanisms of action were not discernible with the proposed experiments. On the other hand, commercial formulations do not present a single excipient but several, which can counteract their effects. The in situ perfusion technique can be useful for a preliminary screening and risk analysis, while the in vivo pharmacokinetic results would be needed to define conclusive effects.


Assuntos
Atenolol/farmacocinética , Composição de Medicamentos/métodos , Excipientes/farmacologia , Íleo/metabolismo , Absorção Intestinal/efeitos dos fármacos , Rodaminas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Atenolol/administração & dosagem , Difusão/efeitos dos fármacos , Masculino , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Wistar , Rodaminas/administração & dosagem
2.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899548

RESUMO

Colonic Drug Delivery Systems (CDDS) are especially advantageous for local treatment of inflammatory bowel diseases (IBD). Site-targeted drug release allows to obtain a high drug concentration in injured tissues and less systemic adverse effects, as consequence of less/null drug absorption in small intestine. This review focused on the reported contributions in the last four years to improve the effectiveness of treatments of inflammatory bowel diseases. The work concludes that there has been an increase in the development of CDDS in which pH, specific enzymes, reactive oxygen species (ROS), or a combination of all of these triggers the release. These delivery systems demonstrated a therapeutic improvement with fewer adverse effects. Future perspectives to the treatment of this disease include the elucidation of molecular basis of IBD diseases in order to design more specific treatments, and the performance of more in vivo assays to validate the specificity and stability of the obtained systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Administração Oral , Ácidos Aminossalicílicos/uso terapêutico , Animais , Colite/tratamento farmacológico , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/fisiopatologia , Sistemas de Liberação de Medicamentos/tendências , Liberação Controlada de Fármacos , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Mesalamina/uso terapêutico
3.
Mol Pharm ; 16(6): 2418-2429, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30991003

RESUMO

Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of S1 and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show a preferential rhodamine B release from S1 in the colon. Moreover, a model of ulcerative colitis is induced in rats by oral administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) solutions, which was also used to prove the efficacy of S2 for colitis treatment. The specific delivery of hydrocortisone and 5-ASA from S2 material to the colon tissue in injured rats markedly lowers the colon/body weight ratio and the clinical activity score. Histological studies showed a remarkable reduction in inflammation, as well as an intensive regeneration of the affected tissues.


Assuntos
Colite/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Dióxido de Silício/química , Animais , Hidrocortisona/química , Masculino , Mesalamina/química , Mesalamina/uso terapêutico , Ratos , Ratos Wistar , Rodaminas/química , Rodaminas/uso terapêutico
4.
Mol Pharm ; 15(6): 2307-2315, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746133

RESUMO

The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for Cmax being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( fa). Fractions dissolved ( fdiss) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.


Assuntos
Medicamentos Genéricos/farmacocinética , Telmisartan/farmacocinética , Administração Oral , Disponibilidade Biológica , Células CACO-2 , Estudos Cross-Over , Liberação Controlada de Fármacos , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/química , Voluntários Saudáveis , Humanos , Absorção Intestinal , Solubilidade , Telmisartan/administração & dosagem , Telmisartan/química , Equivalência Terapêutica
5.
Biomacromolecules ; 19(4): 1294-1304, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29537830

RESUMO

In this work, 6-phosphogluconic trisodium salt (6-PG-Na+) is introduced as a new aqueous and nontoxic cross-linking agent to obtain ionic hydrogels. Here, it is shown the formation of hydrogels based on chitosan cross-linked with 6-PG-Na+. This formulation is obtained by ionic interaction of cationic groups of polymer with anionic groups of the cross-linker. These hydrogels are nontoxic, do not cause dermal irritation, are easy to extend, and have an adequate adhesion force to be applied as polymeric film over the skin. This formulation exhibits a first order release kinetic and can be applied as drug vehicle for topical administration or as wound dressing for wound healing. The primary goal of this communication is to report the identification and utility of 6-phosphogluconic trisodium salt (6-PG-Na+) as a nontoxic cross-linker applicable for cationic polymers.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Cicatrização/efeitos dos fármacos , Administração Tópica , Quitosana/administração & dosagem , Reagentes de Ligações Cruzadas/química , Gluconatos/administração & dosagem , Gluconatos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Cinética , Polímeros/química , Sódio , Técnicas de Fechamento de Ferimentos
6.
Br J Clin Pharmacol ; 84(10): 2231-2241, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29846973

RESUMO

AIMS: Unavailability and lack of appropriate, effective and safe formulations are common problems in paediatric therapeutics. Key factors such as swallowing abilities, organoleptic preferences and dosage requirements determine the need for optimization of formulations. The provisional Biopharmaceutics Classification System (BCS) can be used in paediatric formulation design as a risk analysis and optimization tool. The objective of this study was to classify six neglected tropical disease drugs following a provisional paediatric BCS (pBCS) classification adapted to three paediatric subpopulations (neonates, infants and children). METHODS: Albendazole, benznidazole, ivermectin, nifurtimox, praziquantel and proguanil were selected from the 5th edition of the Model List of Essential Medicines for Children from the World Health Organization. Paediatric drug solubility classification was based on dose number calculation. Provisional permeability classification was based on log P comparison versus metoprolol log P value, assuming passive diffusion absorption mechanisms and no changes in passive membrane permeability between paediatric patients and adults. pBCS classes were estimated for each drug, according to different doses and volumes adapted for each age stage and were compared to the adult classification. RESULTS: All six drugs were classified into provisional pBCS in the three paediatric subpopulations. Three drugs maintained the same classification as for adults, ivermectin and benznidazole changed solubility class from low to high in neonates and proguanil changed from low to high solubility in all age stages. CONCLUSION: Provisional pBCS classification of these six drugs shows potential changes in the limiting factors in oral absorption in paediatrics, depending on age stage, compared to the adult population. This valuable information will aid the optimization of paediatric dosing and formulations and can identify bioinequivalence risks when comparing different formulations and paediatric populations.


Assuntos
Antiprotozoários/farmacocinética , Medicamentos Essenciais/farmacocinética , Doenças Negligenciadas/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Administração Oral , Fatores Etários , Antiprotozoários/administração & dosagem , Antiprotozoários/classificação , Biofarmácia/classificação , Criança , Pré-Escolar , Desenho de Fármacos , Medicamentos Essenciais/administração & dosagem , Medicamentos Essenciais/classificação , Absorção Gastrointestinal , Humanos , Lactente , Recém-Nascido , Doenças Negligenciadas/classificação , Doenças Negligenciadas/parasitologia , Permeabilidade , Infecções por Protozoários/classificação , Infecções por Protozoários/parasitologia , Solubilidade , Organização Mundial da Saúde
7.
Molecules ; 23(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439396

RESUMO

Magnetic micro-sized mesoporous silica particles were used for the preparation of a gated material able to release an entrapped cargo in the presence of an azo-reducing agent and, to some extent, at acidic pH. The magnetic mesoporous microparticles were loaded with safranin O and the external surface was functionalized with an azo derivative 1 (bearing a carbamate linkage) yielding solid S1. Aqueous suspensions of S1 at pH 7.4 showed negligible safranin O release due to the presence of the bulky azo derivative attached onto the external surface of the inorganic scaffold. However, in the presence of sodium dithionite (azoreductive agent), a remarkable safranin O delivery was observed. At acidic pH, a certain safranin O release from S1 was also found. The pH-triggered safranin O delivery was ascribed to the acid-induced hydrolysis of the carbamate moiety that linked the bulky azo derivatives onto the mesoporous inorganic magnetic support. The controlled release behavior of S1 was also tested using a model that simulated the gastro intestinal tract.


Assuntos
Compostos Azo/química , Nanopartículas/química , Dióxido de Silício/química , Cloretos , Colo/metabolismo , Ditionita/química , Portadores de Fármacos , Liberação Controlada de Fármacos , Compostos Férricos , Compostos Ferrosos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Magnetismo , Microesferas , Oxirredução , Fenazinas/administração & dosagem , Porosidade , Propriedades de Superfície
8.
Mol Pharm ; 14(4): 1264-1270, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263609

RESUMO

The Caco-2 cellular monolayer is a widely accepted in vitro model to predict human permeability but suffering from several and critical limitations. Therefore, some alternative cell cultures to mimic the human intestinal epithelium, as closely as possible, have been developed to achieve more physiological conditions, as the Caco-2/HT29-MTX coculture and the triple Caco-2/HT29-MTX/Raji B models. In this work the permeability of 12 model drugs of different Biopharmaceutical Classification System (BCS) characteristics, in the coculture and triple coculture models was assessed. Additionally, the utility of both models to classify compounds according to the BCS criteria was scrutinized. The obtained results suggested that the coculture of Caco-2/HT29-MTX and the triple coculture of Caco-2/HT29-MTX/Raji B were useful models to predict intestinal permeability and to classify the drugs in high or low permeability according to BCS. Moreover, to study thoroughly the transport mechanism of a specific drug, using a more complex model than Caco-2 monocultures is more suitable because coculture and triple coculture are more physiological models, so the results obtained with them will be closer to those obtained in the human intestine.


Assuntos
Colo/metabolismo , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Células HT29 , Humanos , Permeabilidade
9.
Mol Pharm ; 14(12): 4442-4453, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29064714

RESUMO

Colon targeted drug delivery is highly relevant not only to treat colonic local diseases but also for systemic therapies. Mesoporous silica nanoparticles (MSNs) have been demonstrated as useful systems for controlled drug release given their biocompatibility and the possibility of designing gated systems able to release cargo only upon the presence of certain stimuli. We report herein the preparation of three gated MSNs able to deliver their cargo triggered by different stimuli (redox ambient (S1), enzymatic hydrolysis (S2), and a surfactant or being in contact with cell membrane (S3)) and their performance in solution and in vitro with Caco-2 cells. Safranin O dye was used as a model drug to track cargo fate. Studies of cargo permeability in Caco-2 monolayers demonstrated that intracellular safranin O levels were significantly higher in Caco-2 monolayers when using MSNs compared to those of free dye. Internalization assays indicated that S2 nanoparticles were taken up by cells via endocytosis. S2 nanoparticles were selected for in vivo tests in rats. For in vivo assays, capsules were filled with S2 nanoparticles and coated with Eudragit FS 30 D to target colon. The enteric coated capsule containing the MSNs was able to deliver S2 nanoparticles in colon tissue (first step), and then nanoparticles were able to deliver safranin O inside the colonic cells after the enzymatic stimuli (second step). This resulted in high levels of safranin O in colonic tissue combined with low dye levels in plasma and body tissues. The results suggested that this combination of enzyme-responsive gated MSNs and enteric coated capsules may improve the absorption of drugs in colon to treat local diseases with a reduction of systemic effects.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Colo/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Mucosa Intestinal/efeitos dos fármacos , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Colo/citologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Composição de Medicamentos , Humanos , Mucosa Intestinal/citologia , Masculino , Modelos Animais , Nanopartículas/química , Fenazinas/administração & dosagem , Ácidos Polimetacrílicos/química , Porosidade , Ratos , Dióxido de Silício/química , Distribuição Tecidual
10.
Pharm Res ; 35(1): 2, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29288412

RESUMO

PURPOSE: The effective rat intestinal permeability (P eff ) was deconvolved using a biophysical model based on parameterized paracellular, aqueous boundary layer, transcellular permeabilities, and the villus-fold surface area expansion factor. METHODS: Four types of rat intestinal perfusion data were considered: single-pass intestinal perfusion (SPIP) in the jejunum (n = 40), and colon (n = 15), closed-loop (Doluisio type) in the small intestine (n = 78), and colon (n = 74). Moreover, in vitro Caco-2 permeability values were used to predict rat in vivo values in the rat data studied. RESULTS: Comparable number of molecules permeate via paracellular water channels as by the lipoidal transcellular route in the SPIP method, although in the closed-loop method, the paracellular route appears dominant in the colon. The aqueous boundary layer thickness in the small intestine is comparable to that found in unstirred in vitro monolayer assays; it is thinner in the colon. The mucosal surface area in anaesthetized rats is 0.96-1.4 times the smooth cylinder calculated value in the colon, and it is 3.1-3.6 times in the small intestine. The paracellular permeability of the intestine appeared to be greater in rat than human, with the colon showing more leakiness (higher P para ) than the small intestine. CONCLUSION: Based on log intrinsic permeability values, the correlations between the in vitro and in vivo models ranged from r2 0.82 to 0.92. The SPIP-Doluisio method comparison indicated identical log permeability selectivity trend with negligible bias.


Assuntos
Colo/metabolismo , Intestino Delgado/metabolismo , Jejuno/metabolismo , Modelos Biológicos , Compostos Orgânicos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Células CACO-2 , Bases de Dados de Produtos Farmacêuticos , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Perfusão , Permeabilidade , Farmacocinética , Ratos Wistar
11.
Mol Pharm ; 12(9): 3167-74, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26287948

RESUMO

The purpose of this work is to investigate the discriminatory power of the Biopharmaceutics Classification System (BCS)-biowaiver in vitro methodology, i.e., to investigate if a BCS-biowaiver approach would have detected the Cmax differences observed between two zolpidem tablets and to identify the cause of the in vivo difference. Several dissolution conditions were tested with three zolpidem formulations: the reference (Stilnox), a bioequivalent formulation (BE), and a nonbioequivalent formulation (N-BE). Zolpidem is highly soluble at pH 1.2, 4.5, and 6.8. Its permeability in Caco-2 cells is higher than that of metoprolol and its transport mechanism is passive diffusion. None of the excipients (alone or in combination) showed any effect on permeability. All formulations dissolved more than 85% in 15 min in the paddle apparatus at 50 rpm in all dissolution media. However, at 30 rpm the nonbioequivalent formulation exhibited a slower dissolution rate. A slower gastric emptying rate was also observed in rats for the nonbioequivalent formulation. A slower disintegration and dissolution or a delay in gastric emptying might explain the Cmax infra-bioavailability for a highly permeable drug with short half-life. The BCS-biowaiver approach would have declared bioequivalence, although the in vivo study was not conclusive but detected a 14% mean difference in Cmax that precluded the bioequivalence demonstration. Nonetheless, these findings suggest that a slower dissolution rate is more discriminatory and that rotation speeds higher than 50 rpm should not be used in BCS-biowaivers, even if a coning effect occurs.


Assuntos
Biofarmácia/métodos , Excipientes/química , Agonistas de Receptores de GABA-A/metabolismo , Trato Gastrointestinal/metabolismo , Piridinas/metabolismo , Animais , Disponibilidade Biológica , Células CACO-2 , Permeabilidade da Membrana Celular , Química Farmacêutica , Esvaziamento Gástrico/fisiologia , Humanos , Ratos , Equivalência Terapêutica , Zolpidem
12.
Mol Pharm ; 11(5): 1403-14, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24665996

RESUMO

Cell culture permeability experiments are valuable tools in drug development and candidate selection, but the monolayer preparation protocols and the calculations procedures can affect the permeability estimation. Hence, standardization and method suitability demonstration are necessary steps for using permeability data for regulatory and in vivo prediction purposes. Much attention is usually paid to experimental procedure validation and less to the mathematical analysis of the results although the standard equations used imply several assumptions that many times do not hold. The aim of this study was to use a simulation strategy to explore the performance of a new proposed modified nonsink equation (MNS) for unidirectional apparent permeability estimation in different types of profiles (of cumulative drug amounts versus time) including those in which the initial permeation rate is altered, considering several levels of experimental variability. The second objective was to compare the MNS method with the classical sink and nonsink approaches and finally to explore its usefulness for BCS classification. Real data from permeability experiments representing atypical profiles have been used for fitting with the three approaches, MNS, sink, and nonsink equations, in order to validate the performance of the new proposed model. The results demonstrated that the MNS method is a precise and accurate equation for calculating the apparent unidirectional permeability in any type of profile and different scenarios of variability, in any sink and nonsink conditions, while the standard nonsink equation fails in obtaining good permeability estimations in those situations in which the initial permeation rate is altered. Linear regression models (S and SC) are not valid under nonsink conditions, as expected, as the underlying assumptions (sink conditions) do not hold, but also in situations in which sink conditions are fulfilled but the system variability is high.


Assuntos
Modelos Teóricos , Permeabilidade , Análise de Regressão
13.
Pharmaceutics ; 16(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543284

RESUMO

The purpose of this study was to predict the in vivo bioequivalence (BE) outcome of valsartan (VALS, BCS class IV) from three oral-fixed combination products with hydrochlorothiazide (HCTZ, BCS class III) (Co-Diovan® Forte as reference and two generic formulations in development) by conducting in vivo predictive dissolution with a gastrointestinal simulator (GIS) and a physiologically based biopharmaceutic model (PBBM). In the first BE study, the HCTZ failed, but the VALS 90% CI of Cmax and the AUC were within the acceptance limits, while, in the second BE study, the HCTZ 90% CI of Cmax and the AUC were within the acceptance limits, but the VALS failed. As both drugs belong to different BCS classes, their limiting factors for absorption are different. On the other hand, the gastrointestinal variables affected by the formulation excipients have a distinct impact on their in vivo exposures. Dissolution tests of the three products were performed in a GIS, and a PBBM was constructed for VALS by incorporating in the mathematical model of the in vitro-in vivo correlation (IVIVC) the gastrointestinal variables affected by the excipients, namely, VALS permeability and GI transit time. VALS permeability in presence of the formulation excipients was characterized using the in situ perfusion method in rats, and the impact of the excipients on the GI transit times was estimated from the HCTZ's in vivo results. The model was able to fit the in vivo BE results with a good prediction error. This study contributes to the field by showing the usefulness of PBBM in establishing in vitro-in vivo relationships incorporating not only dissolution data but also other gastrointestinal critical variables that affect drug exposure in BCS class IV compounds.

14.
Pharmaceutics ; 16(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794238

RESUMO

Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3-5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack of alternative formulations, which provide sufficient formulation to cover the treatment of large animals or allow the treatment of a group of them, can be overcome with compounding. For this purpose, it has to be considered that itraconazole is a weak base, class II compound, according to the Biopharmaceutics Classification System, that can precipitate when reaching the duodenum. The aim of this work is to develop alternative oral formulations of itraconazole for the treatment of dermatophytosis. Several oral compounds of itraconazole were prepared and compared, in terms of dissolution rate, permeability, and stability, in order to provide alternatives to the medicine commercialized. The most promising formulation contained hydroxypropyl methylcellulose and ß-cyclodextrin. This combination of excipients was capable of dissolving the same concentration as the reference product and delaying the precipitation of itraconazole upon leaving the stomach. Moreover, the intestinal permeability of itraconazole was increased more than two-fold.

15.
Mol Pharm ; 10(10): 3822-31, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23977999

RESUMO

The relevant parameters for predicting rate and extent of access across the blood-brain barrier (BBB) are fu,plasma (unbound fraction in plasma), Vu,brain (distribution volume in brain) and Kp,uu,brain (ratio of free concentrations in plasma and brain). Their estimation still requires animal studies and in vitro low throughput experiments which make difficult the screening of new CNS candidates. The aim of the present work was to develop a new whole in vitro high throughput method to predict drug rate and extent of access across the BBB. The system permits estimation of fu,plasma, Vu,brain and Kp,uu,brain in a single experimental system, using in vitro cell monolayers in different conditions. From the ratios of the apparent permeability values (Papp) with the adequate mathematical analysis the relevant parameters can be estimated. Papp of ten model compounds has been obtained in MDCKII and MDCK-Mdr1cell monolayers in the absence and presence of albumin and brain homogenate. The ratio of Papp in the absence and presence of albumin allows estimation of in vitro fu,plasma. Papp in the presence of brain homogenate is used to estimate fu,brain and Vu,brain. Kp,uu,brain is estimated from the apical to basal versus basal to apical clearances. The BBB parameters obtained with the new method were predictive of the in vivo behavior of candidates. In vitro fu,plasma, Kp,uu,brain and Vu,brain (calculated with Papp from MDCKII cell line) presented a good correlation with in vivo fu,plasma, Kp,uu,CSF and Vu,brain published values (r=0.92; r=0.85; and r=0.99 respectively). Despite its simplicity the predictive performance is fairly good considering the reduced number of tested compounds with different physicochemical and transport properties. Further experimental modifications could be checked to optimize the method, but the present data support its feasibility. As other in vitro cell culture models, the system is suitable for miniaturization and robotization to allow high throughput screening of CNS candidates.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Animais , Linhagem Celular , Cães , Masculino , Modelos Teóricos , Suínos
16.
Int J Pharm ; 636: 122759, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801479

RESUMO

The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Sistema Nervoso Central , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Doenças do Sistema Nervoso Central/tratamento farmacológico
17.
Pharmaceutics ; 15(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242673

RESUMO

Currently, the mechanisms involved in drug access to the central nervous system (CNS) are not completely elucidated, and research efforts to understand the behaviour of the therapeutic agents to access the blood-brain barrier continue with the utmost importance. The aim of this work was the creation and validation of a new in vitro model capable of predicting the in vivo permeability across the blood-brain barrier in the presence of glioblastoma. The selected in vitro method was a cell co-culture model of epithelial cell lines (MDCK and MDCK-MDR1) with a glioblastoma cell line (U87-MG). Several drugs were tested (letrozole, gemcitabine, methotrexate and ganciclovir). Comparison of the proposed in vitro model, MDCK and MDCK-MDR1 co-cultured with U87-MG, and in vivo studies showed a great predictability for each cell line, with R2 values of 0.8917 and 0.8296, respectively. Therefore, both cells lines (MDCK and MDCK-MDR1) are valid for predicting the access of drugs to the CNS in the presence of glioblastoma.

18.
Nanomedicine (Lond) ; 18(25): 1799-1813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37990994

RESUMO

Background: Glioblastoma is the most common and lethal brain cancer. New treatments are needed. However, the presence of the blood-brain barrier is limiting the development of new treatments directed toward the brain, as it restricts the access and distribution of drugs to the CNS. Materials & methods: In this work, two different nanoparticles (i.e., mesoporous silica nanoparticles and magnetic mesoporous silica nanoparticles) loaded with ponatinib were prepared. Results & conclusion: Both particles were characterized and tested in vitro and in vivo, proving that they are not toxic for blood-brain barrier cells and they increase the amount of drug reaching the brain when administered intranasally in comparison with the results obtained for the free drug.


This article presents a couple of promising nanoparticles for the treatment of brain cancer. This research is interesting because the brain and spinal cord are protected by a membrane that prevents toxic substances from reaching them but also hinders the access of drugs. One type of particle has a magnet in its core, so it can be driven with another external magnet until it reaches target; the other type does not have a magnet but has a small size, which would allow it to cross the membrane mentioned above. These particles have been proven to be able to kill cancer cells and to reach the brain after been administered through the nose in a better way than the free drug.


Assuntos
Portadores de Fármacos , Nanopartículas , Administração Intranasal , Encéfalo , Dióxido de Silício , Sistemas de Liberação de Medicamentos/métodos , Porosidade
19.
Curr Drug Deliv ; 20(9): 1288-1313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36082850

RESUMO

BACKGROUND: Currently, there is ongoing research in the pharmaceutical technology field to develop innovative drug delivery systems with improved therapeutic efficacy. OBJECTIVES: Although there is a high need for new drug molecules, most scientists focus on the advancement of novel pharmaceutical formulations since the present excipients lack important properties such as low release rate leading to repeated dosing. Aside from this, pharmaceutical technologists aim to develop drug formulations that can target specific organs and tissues, lowering the possibility of adverse effects. METHODS: This review aims to cover the different polymer-based gel types, the development and characterization methods, as well as applications thereof. Finally, the recent advancements and future perspectives focusing on radiolabeled gels will be addressed. RESULTS: In the last decades, polymer based pharmaceutical gels have shown attractive properties and therefore have raised the attention of pharmaceutical scientists. Gels are either chemically or physically cross-linked networks that can absorb fluids such as water (hydrogels), oil (organogels) and even air(aerogels). A variety of polymers, either synthetic or natural, have been employed as components for the gels. Stimuli-responsive gels based on stimuli-sensitive polymers are among the most studied gel class of last years. CONCLUSION: The use of polymer-based gels as drug delivery systems would be beneficial for targeting numerous diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Polímeros/química , Géis/química , Hidrogéis/química , Excipientes , Tecnologia Farmacêutica
20.
Pharmaceutics ; 14(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057075

RESUMO

The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA