Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(9): e0305610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292688

RESUMO

The aim of the present research was to evaluate the efficiency of different vegetation indices (VI) obtained from satellites with varying spatial resolutions in discriminating the phenological stages of soybean crops. The experiment was carried out in a soybean cultivation area irrigated by central pivot, in Balsas, MA, Brazil, where weekly assessments of phenology and leaf area index were carried out. Throughout the crop cycle, spectral data from the study area were collected from sensors, onboard the Sentinel-2 and Amazônia-1 satellites. The images obtained were processed to obtain the VI based on NIR (NDVI, NDWI and SAVI) and RGB (VARI, IV GREEN and GLI), for the different phenological stages of the crop. The efficiency in identifying phenological stages by VI was determined through discriminant analysis and the Algorithm Neural Network-ANN, where the best classifications presented an Apparent Error Rate (APER) equal to zero. The APER for the discriminant analysis varied between 53.4% and 70.4% while, for the ANN, it was between 47.4% and 73.9%, making it not possible to identify which of the two analysis techniques is more appropriate. The study results demonstrated that the difference in sensors spatial resolution is not a determining factor in the correct identification of soybean phenological stages. Although no VI, obtained from the Amazônia-1 and Sentinel-2 sensor systems, was 100% effective in identifying all phenological stages, specific indices can be used to identify some key phenological stages of soybean crops, such as: flowering (R1 and R2); pod development (R4); grain development (R5.1); and plant physiological maturity (R8). Therefore, VI obtained from orbital sensors are effective in identifying soybean phenological stages quickly and cheaply.


Assuntos
Glycine max , Glycine max/crescimento & desenvolvimento , Redes Neurais de Computação , Brasil , Produtos Agrícolas/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Algoritmos , Análise Discriminante
2.
PLoS One ; 19(1): e0292076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166042

RESUMO

Extreme weather events, such as severe droughts, pose a threat to the sustainability of beef cattle by limiting the growth and development of forage plants and reducing the available pasture for animals. Thus, the search for forage species that are more tolerant and adapted to soil water deficit conditions is an important strategy to improve food supply. In this study, we propose utilizing the mathematical concept of the Manhattan distance to assess the variations in the morphological variables of tropical forage grasses under water-limited conditions. This study aimed to select genotypes of tropical forage grasses under different water stress levels (moderate or severe) at this distance and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Nine varieties from five species were examined. Forage grasses were grown in 12-L pots under three soil irrigation regimes [100% pot capacity-PC (well-irrigated control), 60% PC (moderate drought stress), and 25% PC (severe drought stress)] with four replicates. Drought stress treatments were applied for 25 days during the forage grass tillering and stalk elongation phases. After exposure to drought stress, the growth and morphological traits of forage plants were evaluated. The results show that the use of the Manhattan distance combined with TOPSIS helps in the genotypic selection of more stable tropical forage grass varieties when comparing plants exposed to moderate and severe drought conditions in relation to the nonstressful environment (control). The 'ADR 300', 'Pojuca', 'Marandu', and 'Xaraés' varieties show greater stability when grown in a greenhouse and subjected to water stress environments. The selected forage varieties can be used as parents in plant breeding programs, allowing us to obtain new drought-resistant genotypes.


Assuntos
Desidratação , Poaceae , Melhoramento Vegetal , Genótipo , Solo , Secas
3.
J Gen Virol ; 94(Pt 2): 418-431, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136367

RESUMO

Begomoviruses are ssDNA plant viruses that cause serious epidemics in economically important crops worldwide. Non-cultivated plants also harbour many begomoviruses, and it is believed that these hosts may act as reservoirs and as mixing vessels where recombination may occur. Begomoviruses are notoriously recombination-prone, and also display nucleotide substitution rates equivalent to those of RNA viruses. In Brazil, several indigenous begomoviruses have been described infecting tomatoes following the introduction of a novel biotype of the whitefly vector in the mid-1990s. More recently, a number of viruses from non-cultivated hosts have also been described. Previous work has suggested that viruses infecting non-cultivated hosts have a higher degree of genetic variability compared with crop-infecting viruses. We intensively sampled cultivated and non-cultivated plants in similarly sized geographical areas known to harbour either the weed-infecting Macroptilium yellow spot virus (MaYSV) or the crop-infecting Tomato severe rugose virus (ToSRV), and compared the molecular evolution and population genetics of these two distantly related begomoviruses. The results reinforce the assertion that infection of non-cultivated plant species leads to higher levels of standing genetic variability, and indicate that recombination, not adaptive selection, explains the higher begomovirus variability in non-cultivated hosts.


Assuntos
Begomovirus/classificação , Begomovirus/genética , Variação Genética , Doenças das Plantas/virologia , Plantas/virologia , Recombinação Genética , Brasil , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
4.
PLoS One ; 17(6): e0269799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35731745

RESUMO

Excessive rainfall in the soybean preharvest period can make mechanized crop harvesting technically and economically unfeasible, causing 100% losses in soybean grain yield. An alternative to reduce the economic losses of farmers would be using unharvested soybean crop residues as a source of nitrogen (N) for the subsequent corn crop. However, a question that still needs to be understood is whether the amount of N released from unharvested soybean residues (straw and grains) is sufficient to meet all the nutritional demand for this nutrient in the off-season corn. Therefore, this study investigated the impact of unharvested soybean crop residue persistence on the yield response of off-season corn crop (Zea mays L.) to the application of N fertilizer rates when grown in tropical Cerrado soils of medium and high fertility. Four simple corn hybrids (SYN7G17 TL, 30F53VYHR, B2433PWU, and AG 8700 PRO3) were grown in soils of medium fertility and medium acidity level (UFMS 1) and high fertility and low acidity level (UFMS 2) and fertilized with five of N fertilizer rates (0, 40, 80, 120, and 160 kg ha-1 of N) applied at 30 days after emergence (DAE). Canonical correlation analysis (CCA) was used to investigate the interrelationships between the groups of independent (agricultural production areas, corn cultivars, and N application rates) and dependent (corn agronomic traits) variables. Crop residues remaining on the soil surface from soybeans not harvested and inoculated with Bradyrhizobium spp. can supply most of the nitrogen requirement of off-season corn grown in succession, especially in tropical soils of medium fertility. However, in high-fertility tropical soils, the maximum grain yield potential of off-season corn cultivars can be obtained with the application of mineral N fertilizer in supplement the amount of nitrogen released from unharvested soybean residues. Therefore, the N requirement depends on the corn cultivar and the agricultural production area. However, our results show that when off-season corn is grown on unharvested soybean residues, nitrogen fertilization in topdressing can be dispensed. The agricultural area with high fertility soil (UFMS 2) enhances the grain yield of the off-season corn crop. The corn cultivar AG 8700 PRO3 has a higher thousand-grain mass and high grain yield potential under Brazilian Cerrado conditions.


Assuntos
Bradyrhizobium , Fabaceae , Agricultura/métodos , Fertilizantes , Nitrogênio , Estações do Ano , Solo/química , Glycine max , Zea mays
5.
PeerJ ; 9: e12297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754617

RESUMO

This study was carried out during January 2020-December 2020 in a semi-desert ecosystem in southern Sonora, Mexico, to determine the annual and daily variations in water potential and the normalized difference vegetation index (NDVI) of Bursera fagaroides Engl., Monogr. Phan., Parkinsonia aculeata L., Sp. Pl.; Prosopis laevigata (Humb. & Bonpl. ex Willd.), and Atriplex canescens (Pursh) Nutt. Soil electrical conductivity, cation content, and physical characteristics were determined at two depths, and water potential (ψ) was measured in roots, stems, and leaves. The daily leaf ψ was measured every 15 days each month to determine the duration of stress (hours) and the stress intensity (SI). The electrical conductivity determinations classified the soil in the experimental area as strongly saline. A significant difference was noted in electrical conductivity between soil depths. The four studied species showed significant gradients of ψ in their organs. In this soil, all four species remained in a stressed condition for approximately 11 h per day. The mean SI was 27%, and B. fagaroides Engl., Monogr. Phan. showed the lowest value. The four species showed increased NDVI values during the rainy months, with P. laevigata (Humb. & Bonpl. ex Willd.) and Parkinsonia aculeata L., Sp. Pl. showing the highest values. The capacity for ψ decrease under saline conditions identified A. canescens (Pursh) Nutt., B. fagaroides Engl., Monogr. Phan. and P. aculeata L., Sp. Pl. as practical and feasible alternatives for establishment in saline soils in southern Sonora for purposes of soil recovery and reforestation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA