Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(4): 997-1015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38281284

RESUMO

Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.


Assuntos
Endorreduplicação , Frutas , Regulação da Expressão Gênica de Plantas , Ploidias , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Endorreduplicação/genética , Perfilação da Expressão Gênica , Divisão Celular/genética
2.
Plant Physiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588030

RESUMO

FW2.2 (standing for FRUIT WEIGHT 2.2), the founding member of the CELL NUMBER REGULATOR (CNR) gene family, was the first cloned gene underlying a quantitative trait locus (QTL) governing fruit size and weight in tomato (Solanum lycopersicum). However, despite this discovery over 20 years ago, the molecular mechanisms by which FW2.2 negatively regulates cell division during fruit growth remain undeciphered. In the present study, we confirmed that FW2.2 is a membrane-anchored protein whose N- and C-terminal ends face the apoplast. We unexpectedly found that FW2.2 is located at plasmodesmata (PD). FW2.2 participates in the spatiotemporal regulation of callose deposition at PD and belongs to a protein complex which encompasses callose synthases. These results suggest that FW2.2 has a regulatory role in cell-to-cell communication by modulating PD transport capacity and trafficking of signaling molecules during fruit development.

3.
Genes Dev ; 31(2): 197-208, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167503

RESUMO

The characteristic shapes and sizes of organs are established by cell proliferation patterns and final cell sizes, but the underlying molecular mechanisms coordinating these are poorly understood. Here we characterize a ubiquitin-activated peptidase called DA1 that limits the duration of cell proliferation during organ growth in Arabidopsis thaliana The peptidase is activated by two RING E3 ligases, Big Brother (BB) and DA2, which are subsequently cleaved by the activated peptidase and destabilized. In the case of BB, cleavage leads to destabilization by the RING E3 ligase PROTEOLYSIS 1 (PRT1) of the N-end rule pathway. DA1 peptidase activity also cleaves the deubiquitylase UBP15, which promotes cell proliferation, and the transcription factors TEOSINTE BRANCED 1/CYCLOIDEA/PCF 15 (TCP15) and TCP22, which promote cell proliferation and repress endoreduplication. We propose that DA1 peptidase activity regulates the duration of cell proliferation and the transition to endoreduplication and differentiation during organ formation in plants by coordinating the destabilization of regulatory proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas com Domínio LIM/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Ativação Enzimática , Proteínas com Domínio LIM/genética , Estabilidade Proteica
4.
Plant Physiol ; 188(1): 382-396, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601614

RESUMO

Plant organ size and shape are major agronomic traits that depend on cell division and expansion, which are both regulated by complex gene networks. In several eudicot species belonging to the rosid clade, organ growth is controlled by a repressor complex consisting of PEAPOD (PPD) and KINASE-INDUCIBLE DOMAIN INTERACTING (KIX) proteins. The role of these proteins in asterids, which together with the rosids constitute most of the core eudicot species, is unknown. We used Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 genome editing to target SlKIX8 and SlKIX9 in the asterid model species tomato (Solanum lycopersicum) and analyzed loss-of-function phenotypes. Loss-of-function of SlKIX8 and SlKIX9 led to the production of enlarged, dome-shaped leaves and these leaves exhibited increased expression of putative Solanum lycopersicum PPD (SlPPD target genes. Unexpectedly, kix8 kix9 mutants carried enlarged fruits with increased pericarp thickness due to cell expansion. At the molecular level, protein interaction assays indicated that SlKIX8 and SlKIX9 act as adaptors between the SlPPD and SlTOPLESS co-repressor proteins. Our results show that KIX8 and KIX9 are regulators of organ growth in asterids and can be used in strategies to improve important traits in produce such as thickness of the fruit flesh.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo
5.
J Exp Bot ; 74(20): 6269-6284, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37343125

RESUMO

Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).


Assuntos
Endorreduplicação , Frutas , Organogênese Vegetal/genética , Ciclo Celular , Mitose
6.
J Exp Bot ; 74(3): 848-863, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383402

RESUMO

The pericarp is the predominant tissue determining the structural characteristics of most fruits. However, the molecular and genetic mechanisms controlling pericarp development remain only partially understood. Previous studies have identified that CLASS-II KNOX genes regulate fruit size, shape, and maturation in Arabidopsis thaliana and Solanum lycopersicum. Here we characterized the roles of the S. lycopersicum CLASS-II KNOX (TKN-II) genes in pericarp development via a detailed histological, anatomical, and karyotypical analysis of TKN-II gene clade mRNA-knockdown (35S:amiR-TKN-II) fruits. We identify that 35S:amiR-TKN-II pericarps contain more cells around their equatorial perimeter and fewer cell layers than the control. In addition, the cell sizes but not the ploidy levels of these pericarps were dramatically reduced. Further, we demonstrate that fruit shape and pericarp layer number phenotypes of the 35S:amiR-TKN-II fruits can be overridden by the procera mutant, known to induce a constitutive response to the plant hormone gibberellin. However, neither the procera mutation nor exogenous gibberellin application can fully rescue the reduced pericarp width and cell size phenotype of 35S:amiR-TKN-II pericarps. Our findings establish that TKN-II genes regulate tomato fruit anatomy, acting via gibberellin to control fruit shape but utilizing a gibberellin-independent pathway to control the size of pericarp cells.


Assuntos
Giberelinas , Solanum lycopersicum , Giberelinas/metabolismo , Frutas/metabolismo , Solanum lycopersicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Mol Biol ; 108(3): 257-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35050466

RESUMO

KEY MESSAGE: A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Plantas Geneticamente Modificadas , Plasmídeos , Estresse Fisiológico , Fatores de Transcrição/genética
8.
J Exp Bot ; 73(14): 4662-4673, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35536651

RESUMO

The ZINC FINGER-HOMEODOMAIN (ZHD) protein family is a plant-specific family of transcription factors containing two conserved motifs: a non-canonical C5H3 zinc finger domain (ZF) and a DNA-binding homeodomain (HD). The MINI ZINC FINGER (MIF) proteins belong to this family, but were possibly derived from the ZHDs by losing the HD. Information regarding the function of ZHD and MIF proteins is scarce. However, different studies have shown that ZHD/MIF proteins play important roles not only in plant growth and development, but also in response to environmental stresses, including drought and pathogen attack. Here we review recent advances relative to ZHD/MIF functions in multiple species, to provide new insights into the diverse roles of these transcription factors in plants. Their mechanism of action in relation to their ability to interact with other proteins and DNA is also discussed. We then propose directions for future studies to understand better their important roles and pinpoint strategies for potential applications in crop improvement.


Assuntos
Regulação da Expressão Gênica de Plantas , Dedos de Zinco , Proteínas de Homeodomínio/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
9.
J Exp Bot ; 72(15): 5300-5311, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974684

RESUMO

The FW2.2 gene is associated with the major quantitative trait locus (QTL) governing fruit size in tomato, and acts by negatively controlling cell division during fruit development. FW2.2 belongs to a multigene family named the CELL NUMBER REGULATOR (CNR) family. CNR proteins harbour the uncharacterized PLAC8 motif made of two conserved cysteine-rich domains separated by a variable region that are predicted to be transmembrane segments, and indeed FW2.2 localizes to the plasma membrane. Although FW2.2 was cloned more than two decades ago, the molecular mechanisms of action remain unknown. In particular, how FW2.2 functions to regulate cell cycle and fruit growth, and thus fruit size, is as yet not understood. Here we review current knowledge on PLAC8-containing CNR/FWL proteins in plants, which are described to participate in organogenesis and the regulation of organ size, especially in fruits, and in cadmium resistance, ion homeostasis, and/or Ca2+ signalling. Within the plasma membrane FW2.2 and some CNR/FWLs are localized in microdomains, which is supported by recent data from interactomics studies. Hence FW2.2 and CNR/FWL could be involved in a transport function of signalling molecules across membranes, influencing organ growth via a cell to cell trafficking mechanism.


Assuntos
Solanum lycopersicum , Contagem de Células , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Cell ; 30(1): 83-100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298836

RESUMO

In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SlWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Flores/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Acetilação , Arabidopsis/genética , Sequência de Bases , Proteínas de Ligação a DNA , Flores/genética , Frutas , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Meristema/genética , Especificidade de Órgãos/genética , Fenótipo , Ligação Proteica , Homologia de Sequência de Aminoácidos
11.
PLoS Genet ; 14(2): e1007218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29401459

RESUMO

Organ size control is of particular importance for developmental biology and agriculture, but the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids, which possess stem cell-like properties, have been recognized to play important roles in leaf growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs). Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates their protein stability. Further results show that SAP acts in a common pathway with KIX8/9 and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor complex for degradation to regulate meristemoid cell proliferation and organ size.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Tamanho do Órgão/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica , Proteólise , Fatores de Transcrição/genética
12.
Plant Biotechnol J ; 18(2): 553-567, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31361386

RESUMO

Leaf growth is a complex trait for which many similarities exist in different plant species, suggesting functional conservation of the underlying pathways. However, a global view of orthologous genes involved in leaf growth showing conserved expression in dicots and monocots is currently missing. Here, we present a genome-wide comparative transcriptome analysis between Arabidopsis and maize, identifying conserved biological processes and gene functions active during leaf growth. Despite the orthology complexity between these distantly related plants, 926 orthologous gene groups including 2829 Arabidopsis and 2974 maize genes with similar expression during leaf growth were found, indicating conservation of the underlying molecular networks. We found 65% of these genes to be involved in one-to-one orthology, whereas only 28.7% of the groups with divergent expression had one-to-one orthology. Within the pool of genes with conserved expression, 19 transcription factor families were identified, demonstrating expression conservation of regulators active during leaf growth. Additionally, 25 Arabidopsis and 25 maize putative targets of the TCP transcription factors with conserved expression were determined based on the presence of enriched transcription factor binding sites. Based on large-scale phenotypic data, we observed that genes with conserved expression have a higher probability to be involved in leaf growth and that leaf-related phenotypes are more frequently present for genes having orthologues between dicots and monocots than clade-specific genes. This study shows the power of integrating transcriptomic with orthology data to identify or select candidates for functional studies during leaf development in flowering plants.


Assuntos
Arabidopsis , Folhas de Planta , Transcriptoma , Zea mays , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo
13.
J Exp Bot ; 71(8): 2365-2378, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31748815

RESUMO

Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1-ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)-GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)-DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
14.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28420746

RESUMO

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Assuntos
Arabidopsis/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Mitocondrial/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética
15.
Plant J ; 93(2): 387-398, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172253

RESUMO

As part of normal development most eukaryotic organisms, ranging from insects and mammals to plants, display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth. However, the functional significance of endoreduplication is not fully understood. Although endoreduplication is thought to increase metabolic activity due to a global increase in transcription, the issue of gene-specific ploidy-regulated transcription remains open. To investigate the influence of endoreduplication on transcription in tomato fruit, we tested the feasibility of a RNA sequencing (RNA-Seq) approach using total nuclear RNA extracted from purified populations of flow cytometry-sorted nuclei based on their DNA content. Here we show that cell-based approaches to the study of RNA-Seq profiles need to take into account the putative global shift in expression between samples for correct analysis and interpretation of the data. From ploidy-specific expression profiles we found that the activity of cells inside the pericarp is related both to the ploidy level and their tissue location.


Assuntos
Endorreduplicação , Perfilação da Expressão Gênica/métodos , Solanum lycopersicum/genética , Núcleo Celular/genética , DNA de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Ploidias , RNA de Plantas/genética , Análise de Sequência de RNA
16.
Plant Mol Biol ; 99(1-2): 79-93, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30511331

RESUMO

KEY MESSAGE: Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine ß-synthase domains, as an interacting protein of HXK1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hexoquinase/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Hexoquinase/genética , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Sacarose/metabolismo
17.
New Phytol ; 223(2): 783-797, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30955214

RESUMO

Droughts cause severe crop losses worldwide and climate change is projected to increase their prevalence in the future. Similar to the situation for many crops, the reference plant Arabidopsis thaliana (Ath) is considered drought-sensitive, whereas, as we demonstrate, its close relatives Arabidopsis lyrata (Aly) and Eutrema salsugineum (Esa) are drought-resistant. To understand the molecular basis for this plasticity we conducted a deep phenotypic, biochemical and transcriptomic comparison using developmentally matched plants. We demonstrate that Aly responds most sensitively to decreasing water availability with early growth reduction, metabolic adaptations and signaling network rewiring. By contrast, Esa is in a constantly prepared mode as evidenced by high basal proline levels, ABA signaling transcripts and late growth responses. The stress-sensitive Ath responds later than Aly and earlier than Esa, although its responses tend to be more extreme. All species detect water scarcity with similar sensitivity; response differences are encoded in downstream signaling and response networks. Moreover, several signaling genes expressed at higher basal levels in both Aly and Esa have been shown to increase water-use efficiency and drought resistance when overexpressed in Ath. Our data demonstrate contrasting strategies of closely related Brassicaceae to achieve drought resistance.


Assuntos
Adaptação Fisiológica , Brassicaceae/fisiologia , Secas , Ácido Abscísico/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Transdução de Sinais , Especificidade da Espécie , Estresse Fisiológico , Transcriptoma/genética , Água
18.
Plant Physiol ; 178(1): 217-232, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29991485

RESUMO

In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclina D3/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Arabidopsis/anatomia & histologia , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Ciclina D3/metabolismo , Mutação , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 70(21): 6293-6304, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504728

RESUMO

Agrochemicals provide vast potential to improve plant productivity, because they are easy to implement at low cost while not being restricted by species barriers as compared with breeding strategies. Despite the general interest, only a few compounds with growth-promoting activity have been described so far. Here, we add cis-cinnamic acid (c-CA) to the small portfolio of existing plant growth stimulators. When applied at low micromolar concentrations to Arabidopsis roots, c-CA stimulates both cell division and cell expansion in leaves. Our data support a model explaining the increase in shoot biomass as the consequence of a larger root system, which allows the plant to explore larger areas for resources. The requirement of the cis-configuration for the growth-promoting activity of CA was validated by implementing stable structural analogs of both cis- and trans-CA in this study. In a complementary approach, we used specific light conditions to prevent cis/trans-isomerization of CA during the experiment. In both cases, the cis-form stimulated plant growth, whereas the trans-form was inactive. Based on these data, we conclude that c-CA is an appealing lead compound representing a novel class of growth-promoting agrochemicals. Unraveling the underlying molecular mechanism could lead to the development of innovative strategies for boosting plant biomass.


Assuntos
Cinamatos/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Ácidos Carboxílicos/farmacologia , Cinamatos/química , Ciclopropanos/farmacologia , Ácidos Indolacéticos/farmacologia , Isomerismo , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
20.
Plant Cell ; 28(10): 2417-2434, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27729396

RESUMO

Plant growth and crop yield are negatively affected by a reduction in water availability. However, a clear understanding of how growth is regulated under nonlethal drought conditions is lacking. Recent advances in genomics, phenomics, and transcriptomics allow in-depth analysis of natural variation. In this study, we conducted a detailed screening of leaf growth responses to mild drought in a worldwide collection of Arabidopsis thaliana accessions. The genetic architecture of the growth responses upon mild drought was investigated by subjecting the different leaf growth phenotypes to genome-wide association mapping and by characterizing the transcriptome of young developing leaves. Although no major effect locus was found to be associated with growth in mild drought, the transcriptome analysis delivered further insight into the natural variation of transcriptional responses to mild drought in a specific tissue. Coexpression analysis indicated the presence of gene clusters that co-vary over different genetic backgrounds, among others a cluster of genes with important regulatory functions in the growth response to osmotic stress. It was found that the occurrence of a mild drought stress response in leaves can be inferred with high accuracy across accessions based on the expression profile of 283 genes. A genome-wide association study on the expression data revealed that trans regulation seems to be more important than cis regulation in the transcriptional response to environmental perturbations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Secas , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA