Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cereb Cortex ; 33(5): 1581-1594, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441221

RESUMO

Reciprocal connections between primate dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices, furnished by subsets of layer 3 pyramidal neurons (PNs), contribute to cognitive processes including working memory (WM). A different subset of layer 3 PNs in each region projects to the homotopic region of the contralateral hemisphere. These ipsilateral (IP) and callosal (CP) projections, respectively, appear to be essential for the maintenance and transfer of information during WM. To determine if IP and CP layer 3 PNs in each region differ in their transcriptomes, fluorescent retrograde tracers were used to label IP and CP layer 3 PNs in the DLPFC and PPC from macaque monkeys. Retrogradely-labeled PNs were captured by laser microdissection and analyzed by RNAseq. Numerous differentially expressed genes (DEGs) were detected between IP and CP neurons in each region and the functional pathways containing many of these DEGs were shared across regions. However, DLPFC and PPC displayed opposite patterns of DEG enrichment between IP and CP neurons. Cross-region analyses indicated that the cortical area targeted by IP or CP layer 3 PNs was a strong correlate of their transcriptome profile. These findings suggest that the transcriptomes of layer 3 PNs reflect regional, projection type and target region specificity.


Assuntos
Corpo Caloso , Lobo Parietal , Animais , Haplorrinos , Neurônios , Expressão Gênica
2.
Cereb Cortex ; 33(12): 7754-7770, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36971419

RESUMO

In primates, the dorsolateral prefrontal (DLPFC) and posterior parietal (PPC) cortices are key nodes in the working memory network. The working memory-related gamma oscillations induced in these areas, predominantly in layer 3, exhibit higher frequency in DLPFC. Although these regional differences in oscillation frequency are likely essential for information transfer between DLPFC and PPC, the mechanisms underlying these differences remain poorly understood. We investigated, in rhesus monkey, the DLPFC and PPC layer 3 pyramidal neuron (L3PN) properties that might regulate oscillation frequency and assessed the effects of these properties simulating oscillations in computational models. We found that GABAAR-mediated synaptic inhibition synchronizes L3PNs in both areas, but analysis of GABAAR mRNA levels and inhibitory synaptic currents suggested similar mechanisms of inhibition-mediated synchrony in DLPFC and PPC. Basal dendrite spine density and AMPAR/NMDAR mRNA levels were higher in DLPFC L3PNs, whereas excitatory synaptic currents were similar between areas. Therefore, synaptically evoked excitation might be stronger in DLPFC L3PNs due to a greater quantity of synapses in basal dendrites, a main target of recurrent excitation. Simulations in computational networks showed that oscillation frequency and power increased with increasing recurrent excitation, suggesting a mechanism by which the DLPFC-PPC differences in oscillation properties are generated.


Assuntos
Córtex Pré-Frontal , Receptores de GABA-A , Animais , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Lobo Parietal , Primatas
3.
Neurobiol Dis ; 155: 105382, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940180

RESUMO

The unique fast spiking (FS) phenotype of cortical parvalbumin-positive (PV) neurons depends on the expression of multiple subtypes of voltage-gated potassium channels (Kv). PV neurons selectively express Kcns3, the gene encoding Kv9.3 subunits, suggesting that Kcns3 expression is critical for the FS phenotype. KCNS3 expression is lower in PV neurons in the neocortex of subjects with schizophrenia, but the effects of this alteration are unclear, because Kv9.3 subunit function is poorly understood. Therefore, to assess the role of Kv9.3 subunits in PV neuron function, we combined gene expression analyses, computational modeling, and electrophysiology in acute slices from the cortex of Kcns3-deficient mice. Kcns3 mRNA levels were ~ 50% lower in cortical PV neurons from Kcns3-deficient relative to wildtype mice. While silent per se, Kv9.3 subunits are believed to amplify the Kv2.1 current in Kv2.1-Kv9.3 channel complexes. Hence, to assess the consequences of reducing Kv9.3 levels, we simulated the effects of decreasing the Kv2.1-mediated current in a computational model. The FS cell model with reduced Kv2.1 produced spike trains with irregular inter-spike intervals, or stuttering, and greater Na+ channel inactivation. As in the computational model, PV basket cells (PVBCs) from Kcns3-deficient mice displayed spike trains with strong stuttering, which depressed PVBC firing. Moreover, Kcns3 deficiency impaired the recruitment of PVBC firing at gamma frequency by stimuli mimicking synaptic input observed during cortical UP states. Our data indicate that Kv9.3 subunits are critical for PVBC physiology and suggest that KCNS3 deficiency in schizophrenia could impair PV neuron firing, possibly contributing to deficits in cortical gamma oscillations in the illness.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Parvalbuminas/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Esquizofrenia/genética
4.
J Neurosci ; 39(37): 7277-7290, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31341029

RESUMO

In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch-clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs.SIGNIFICANCE STATEMENT In the human and nonhuman primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.


Assuntos
Neocórtex/fisiologia , Lobo Parietal/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/fisiologia , Animais , Feminino , Microdissecção e Captura a Laser/métodos , Macaca mulatta , Masculino , Neocórtex/citologia , Técnicas de Cultura de Órgãos , Lobo Parietal/citologia , Córtex Pré-Frontal/citologia
5.
J Neurosci ; 37(19): 4883-4902, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28408413

RESUMO

Parvalbumin-positive (PV+) neurons control the timing of pyramidal cell output in cortical neuron networks. In the prefrontal cortex (PFC), PV+ neuron activity is involved in cognitive function, suggesting that PV+ neuron maturation is critical for cognitive development. The two major PV+ neuron subtypes found in the PFC, chandelier cells (ChCs) and basket cells (BCs), are thought to play different roles in cortical circuits, but the trajectories of their physiological maturation have not been compared. Using two separate mouse lines, we found that in the mature PFC, both ChCs and BCs are abundant in superficial layer 2, but only BCs are present in deeper laminar locations. This distinctive laminar distribution was observed by postnatal day 12 (P12), when we first identified ChCs by the presence of axon cartridges. Electrophysiology analysis of excitatory synapse development, starting at P12, showed that excitatory drive remains low throughout development in ChCs, but increases rapidly before puberty in BCs, with an earlier time course in deeper-layer BCs. Consistent with a role of excitatory synaptic drive in the maturation of PV+ neuron firing properties, the fast-spiking phenotype showed different maturation trajectories between ChCs and BCs, and between superficial versus deep-layer BCs. ChC and BC maturation was nearly completed, via different trajectories, before the onset of puberty. These findings suggest that ChC and BC maturation may contribute differentially to the emergence of cognitive function, primarily during prepubertal development.SIGNIFICANCE STATEMENT Parvalbumin-positive (PV+) neurons tightly control pyramidal cell output. Thus PV+ neuron maturation in the prefrontal cortex (PFC) is crucial for cognitive development. However, the relative physiological maturation of the two major subtypes of PV+ neurons, chandelier cells (ChCs) and basket cells (BCs), has not been determined. We assessed the maturation of ChCs and BCs in different layers of the mouse PFC, and found that, from early postnatal age, ChCs and BCs differ in laminar location. Excitatory synapses and fast-spiking properties matured before the onset of puberty in both cell types, but following cell type-specific developmental trajectories. Hence, the physiological maturation of ChCs and BCs may contribute to the emergence of cognitive function differentially, and predominantly during prepubertal development.


Assuntos
Envelhecimento/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/fisiologia , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neurônios/classificação , Neurônios/citologia , Córtex Pré-Frontal/citologia
6.
Nat Rev Neurosci ; 14(3): 202-16, 2013 03.
Artigo em Inglês | MEDLINE | ID: mdl-23385869

RESUMO

A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.


Assuntos
Algoritmos , Córtex Cerebral/citologia , Interneurônios/classificação , Interneurônios/citologia , Terminologia como Assunto , Ácido gama-Aminobutírico/metabolismo , Animais , Teorema de Bayes , Córtex Cerebral/metabolismo , Análise por Conglomerados , Humanos , Interneurônios/metabolismo
7.
Cereb Cortex ; 25(11): 4076-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24904071

RESUMO

Development of inhibition onto pyramidal cells may be crucial for the emergence of cortical network activity, including gamma oscillations. In primate dorsolateral prefrontal cortex (DLPFC), inhibitory synaptogenesis starts in utero and inhibitory synapse density reaches adult levels before birth. However, in DLPFC, the expression levels of γ-aminobutyric acid (GABA) synapse-related gene products changes markedly during development until young adult age, suggesting a highly protracted maturation of GABA synapse function. Therefore, we examined the development of GABA synapses by recording GABAAR-mediated inhibitory postsynaptic currents (GABAAR-IPSCs) from pyramidal cells in the DLPFC of neonatal, prepubertal, peripubertal, and adult macaque monkeys. We found that the decay of GABAAR-IPSCs, possibly including those from parvalbumin-positive GABA neurons, shortened by prepubertal age, while their amplitude increased until the peripubertal period. Interestingly, both GABAAR-mediated quantal response size, estimated by miniature GABAAR-IPSCs, and the density of GABAAR synaptic appositions, measured with immunofluorescence microscopy, were stable with age. Simulations in a computational model network with constant GABA synapse density showed that the developmental changes in GABAAR-IPSC properties had a significant impact on oscillatory activity and predicted that, whereas DLPFC circuits can generate gamma frequency oscillations by prepubertal age, mature levels of gamma band power are attained at late stages of development.


Assuntos
Potenciais Pós-Sinápticos Inibidores/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Macaca mulatta , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Piridazinas/farmacologia , Sinapses/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , ômega-Agatoxina IVA/farmacologia
8.
J Neurophysiol ; 113(6): 1850-61, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25540225

RESUMO

In rodent cortex GABAA receptor (GABAAR)-mediated synapses are a significant source of input onto GABA neurons, and the properties of these inputs vary among GABA neuron subtypes that differ in molecular markers and firing patterns. Some features of cortical interneurons are different between rodents and primates, but it is not known whether inhibition of GABA neurons is prominent in the primate cortex and, if so, whether these inputs show heterogeneity across GABA neuron subtypes. We thus studied GABAAR-mediated miniature synaptic events in GABAergic interneurons in layer 3 of monkey dorsolateral prefrontal cortex (DLPFC). Interneurons were identified on the basis of their firing pattern as fast spiking (FS), regular spiking (RS), burst spiking (BS), or irregular spiking (IS). Miniature synaptic events were common in all of the recorded interneurons, and the frequency of these events was highest in FS neurons. The amplitude and kinetics of miniature inhibitory postsynaptic potentials (mIPSPs) also differed between DLPFC interneuron subtypes in a manner correlated with their input resistance and membrane time constant. FS neurons had the fastest mIPSP decay times and the strongest effects of the GABAAR modulator zolpidem, suggesting that the distinctive properties of inhibitory synaptic inputs onto FS cells are in part conferred by GABAARs containing α1 subunits. Moreover, mIPSCs differed between FS and RS interneurons in a manner consistent with the mIPSP findings. These results show that in the monkey DLPFC GABAAR-mediated synaptic inputs are prominent in layer 3 interneurons and may differentially regulate the activity of different interneuron subtypes.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/metabolismo , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Agonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/fisiologia , Macaca mulatta , Masculino , Potenciais Pós-Sinápticos em Miniatura , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Piridinas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Zolpidem
9.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915595

RESUMO

Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.

10.
JAMA Psychiatry ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776078

RESUMO

Importance: The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders. Objective: To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices. Design, Setting, and Participants: The design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques. Main Outcomes and Measures: Outcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments. Results: Layer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C (Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by ß1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or ß1-adrenoceptor antagonist protected working memory from stress. Conclusions and Relevance: The layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants in CACNA1C were associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.

11.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915638

RESUMO

In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC. Here, we decreased PN excitability in rhesus monkey DLPFC in vivo using adeno-associated viral vectors (AAVs) to produce Cre recombinase-mediated overexpression of Kir2.1 channels, a genetic silencing tool that efficiently decreases neuronal excitability. In acute slices prepared from DLPFC 7-12 weeks post-AAV microinjections, Kir2.1-overexpressing PNs had a significantly reduced excitability largely attributable to highly specific effects of the AAV-encoded Kir2.1 channels. Moreover, recordings of synaptic currents showed that Kir2.1-overexpressing DLPFC PNs had reduced strength of excitatory synapses whereas inhibitory synaptic inputs were not affected. The decrease in excitatory synaptic strength was not associated with changes in dendritic spine number, suggesting that excitatory synapse quantity was unaltered in Kir2.1-overexpressing DLPFC PNs. These findings suggest that, in schizophrenia, the excitatory synapses on hypoactive L3PNs are weaker and thus might represent a substrate for novel therapeutic interventions. Significance Statement: In schizophrenia, dorsolateral prefrontal cortex (DLPFC) pyramidal neurons (PNs) have both transcriptional and structural alterations that suggest they are hypoactive. PN hypoactivity is thought to produce synaptic alterations in schizophrenia, however the effects of lower neuronal activity on synaptic function in primate DLPFC have not been examined. Here, we used, for the first time in primate neocortex, adeno-associated viral vectors (AAVs) to reduce PN excitability with Kir2.1 channel overexpression and tested if this manipulation altered the strength of synaptic inputs onto the Kir2.1-overexpressing PNs. Recordings in DLPFC slices showed that Kir2.1 overexpression depressed excitatory (but not inhibitory), synaptic currents, suggesting that, in schizophrenia, the hypoactivity of PNs might be exacerbated by reduced strength of the excitatory synapses they receive.

12.
J Physiol ; 591(19): 4725-48, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23818693

RESUMO

Cholinergic neuromodulation in neocortical networks is required for gamma oscillatory activity associated with working memory and other cognitive processes. Importantly, the cholinergic agonist carbachol (CCh) induces gamma oscillations in vitro, via mechanisms that may be shared with in vivo gamma oscillations and that are consistent with the pyramidal interneuron network gamma (PING) model. In PING oscillations, pyramidal cells (PCs), driven by asynchronous excitatory input, recruit parvalbumin-positive fast-spiking interneurons (FSNs), which then synchronize the PCs via feedback inhibition. Whereas the PING model is favoured by current data, how cholinergic neuromodulation contributes to gamma oscillation production is poorly understood. We thus studied the effects of cholinergic modulation on circuit components of the PING model in mouse medial prefrontal cortex (mPFC) brain slices. CCh depolarized and evoked action potential firing in a fraction of PCs and increased excitatory synaptic input onto FSNs. In synaptically connected pairs, CCh reduced the short-term depression at FSN-PC and PC-FSN synapses, equalizing synaptic strength during repetitive presynaptic firing while simultaneously increasing the failure probability. Interestingly, when PCs or FSNs fired in response to gamma frequency oscillatory inputs, CCh increased the firing probability per cycle. Combined with the equalization of synaptic strength, an increase by CCh in the fraction of neurons recruited per oscillation cycle may support oscillatory synchrony of similar strength during relatively long oscillation episodes such as those observed during working memory tasks, suggesting a significant functional impact of cholinergic modulation of mPFC circuit components crucial for the PING model.


Assuntos
Potenciais de Ação , Agonistas Colinérgicos/farmacologia , Neurônios Colinérgicos/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores , Interneurônios/efeitos dos fármacos , Memória de Curto Prazo , Camundongos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos
13.
Nat Med ; 12(9): 1016-22, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16960576

RESUMO

Identifying the molecular alterations that underlie the pathophysiology of critical clinical features of schizophrenia is an essential step in the rational development of new therapeutic interventions for this devastating illness. Cognitive deficits, such as the impairments in working memory that arise from dysfunction of the dorsolateral prefrontal cortex, are a major determinant of functional outcome in schizophrenia. Here we consider the contributions of disturbances in glutamate, dopamine and GABA neurotransmission to the pathophysiology of working memory impairments in schizophrenia, suggest a cascade of molecular events that might link these disturbances, and argue that the molecular alterations most proximal to the pathophysiology of prefrontal dysfunction offer the most promise as targets for new drug development.


Assuntos
Esquizofrenia/tratamento farmacológico , Dopamina/fisiologia , Ácido Glutâmico/fisiologia , Humanos , Transtornos da Memória/etiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiopatologia , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
14.
Biol Psychiatry ; 94(4): 288-296, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736420

RESUMO

BACKGROUND: In schizophrenia, layer 3 pyramidal neurons (L3PNs) of the dorsolateral prefrontal cortex exhibit deficits in markers of excitatory synaptic inputs that are thought to disrupt the patterns of neural network activity essential for cognitive function. These deficits are usually interpreted under Irwin Feinberg's hypothesis of altered synaptic pruning, which postulates that normal periadolescent pruning, thought to preferentially eliminate weak/immature synapses, is altered in schizophrenia. However, it remains unknown whether periadolescent pruning on L3PNs in the primate dorsolateral prefrontal cortex selectively eliminates weak excitatory synapses or uniformly eliminates excitatory synapses across the full distribution of synaptic strengths. METHODS: To distinguish between these alternative models of synaptic pruning, we assessed the densities of dendritic spines, the site of most excitatory inputs to L3PNs, and the distributions of excitatory synaptic strengths in dorsolateral prefrontal cortex L3PNs from male and female monkeys across the periadolescent period of synaptic pruning. We used patch-clamp methods in acute brain slices to record miniature excitatory synaptic currents and intracellular filling with biocytin to quantify dendritic spines. RESULTS: On L3PNs, dendritic spines exhibited the expected age-related decline in density, but mean synaptic strength and the shape of synaptic strength distributions remained stable with age. CONCLUSIONS: The absence of age-related differences in mean synaptic strength and synaptic strength distributions supports the model of a uniform pattern of synaptic pruning across the full range of synaptic strengths. The implications of these findings for the pathogenesis and functional consequences of dendritic spine deficits in schizophrenia are discussed.


Assuntos
Esquizofrenia , Animais , Masculino , Feminino , Haplorrinos , Células Piramidais/fisiologia , Córtex Pré-Frontal , Sinapses/fisiologia , Plasticidade Neuronal , Espinhas Dendríticas/fisiologia
15.
iScience ; 26(8): 107329, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520693

RESUMO

Microglia are cells with diverse roles, including the regulation of neuronal excitability. We leveraged Patch-seq to assess the presence and effects of microglia in the local microenvironment of recorded neurons. We first quantified the amounts of microglial transcripts in three Patch-seq datasets of human and mouse neocortical neurons, observing extensive contamination. Variation in microglial contamination was explained foremost by donor identity, particularly in human samples, and additionally by neuronal cell type identity in mice. Gene set enrichment analysis suggests that microglial contamination is reflective of activated microglia, and that these transcriptional signatures are distinct from those captured via single-nucleus RNA-seq. Finally, neurons with greater microglial contamination differed markedly in their electrophysiological characteristics, including lowered input resistances and more depolarized action potential thresholds. Our results generalize beyond Patch-seq to suggest that activated microglia may be widely present across brain slice preparations and contribute to neuron- and donor-related electrophysiological variability in vitro.

16.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986883

RESUMO

Objective: This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near the chronically implanted microelectrode. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how does the FBR impact affect the functional stability of neural circuits near implanted Brain-Computer Interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders. Approach: This study utilized multisite Michigan-style microelectrodes that span all cortical layers and the hippocampal CA1 region to collect spontaneous and visually-evoked electrophysiological activity. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of LFP and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation. Main Results: The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations. Significance: This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.

17.
J Neurosci ; 31(1): 142-56, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21209199

RESUMO

Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribution, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP-spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP-spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition. To test this possibility, we used simulations in a computational network of reciprocally connected FS neurons and pyramidal cells and found that brief AMPAR-mediated FS neuron activation is crucial to synchronize, via feedback inhibition, pyramidal cells in the gamma frequency band. Our results raise interesting questions about the mechanisms that might link NMDAR hypofunction to alterations of FS neurons in schizophrenia.


Assuntos
Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Potenciais de Ação/fisiologia , Animais , Biofísica/métodos , Simulação por Computador , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/classificação , Técnicas de Patch-Clamp/métodos , Probabilidade , Piridazinas/farmacologia , Receptores de Glutamato/genética , Estatísticas não Paramétricas
18.
Rev Neurosci ; 23(1): 97-109, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22718616

RESUMO

Cognitive impairment, a core feature of schizophrenia, has been suggested to arise from a disturbance of gamma oscillations that is due to decreased neurotransmission from the parvalbumin (PV) subtype of interneurons. Indeed, PV interneurons have uniquely fast membrane and synaptic properties that are crucially important for network functions such as feedforward inhibition or gamma oscillations. The causes leading to impairment of PV neurotransmission in schizophrenia are still under investigation. Interestingly, NMDA receptors (NMDARs) antagonism results in schizophrenia-like symptoms in healthy adults. Additionally, systemic NMDAR antagonist administration increases prefrontal cortex pyramidal cell firing, apparently by producing disinhibition, and repeated exposure to NMDA antagonists leads to changes in the GABAergic markers that mimic the impairments found in schizophrenia. Based on these findings, PV neuron deficits in schizophrenia have been proposed to be secondary to (NMDAR) hypofunction at glutamatergic synapses onto these cells. However, NMDARs generate long-lasting postsynaptic currents that result in prolonged depolarization of the postsynaptic cells, a property inconsistent with the role of PV cells in network dynamics. Here, we review evidence leading to the conclusion that cortical disinhibition and GABAergic impairment produced by NMDAR antagonists are unlikely to be mediated via NMDARs at glutamatergic synapses onto mature cortical PV neurons.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Vias Neurais
19.
J Physiol ; 589(Pt 20): 4857-84, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807615

RESUMO

Depolarization-induced suppression of inhibition (DSI) is a prevailing form of endocannabinoid signalling. However, several discrepancies have arisen regarding the roles played by the two major brain endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide, in mediating DSI. Here we studied endocannabinoid signalling in the prefrontal cortex (PFC), where several components of the endocannabinoid system have been identified, but endocannabinoid signalling remains largely unexplored. In voltage clamp recordings from mouse PFC pyramidal neurons, depolarizing steps significantly suppressed IPSCs induced by application of the cholinergic agonist carbachol. DSI in PFC neurons was abolished by extra- or intracellular application of tetrahydrolipstatin (THL), an inhibitor of the 2-AG synthesis enzyme diacylglycerol lipase (DAGL). Moreover, DSI was enhanced by inhibiting 2-AG degradation, but was unaffected by inhibiting anandamide degradation. THL, however, may affect other enzymes of lipid metabolism and does not selectively target the α (DAGLα) or ß (DAGLß) isoforms of DAGL. Therefore, we studied DSI in the PFC of DAGLα(-/-) and DAGLß(-/-) mice generated via insertional mutagenesis by gene-trapping with retroviral vectors. Gene trapping strongly reduced DAGLα or DAGLß mRNA levels in a locus-specific manner. In DAGLα(-/-) mice cortical levels of 2-AG were significantly decreased and DSI was completely abolished, whereas DAGLß deficiency did not alter cortical 2-AG levels or DSI. Importantly, cortical levels of anandamide were not significantly affected in DAGLα(-/-) or DAGLß(-/-) mice. The chronic decrease of 2-AG levels in DAGLα(-/-) mice did not globally alter inhibitory transmission or the response of cannabinoid-sensitive synapses to cannabinoid receptor stimulation, although it altered some intrinsic membrane properties. Finally, we found that repetitive action potential firing of PFC pyramidal neurons suppressed synaptic inhibition in a DAGLα-dependent manner. These results show that DSI is a prominent form of endocannabinoid signalling in PFC circuits. Moreover, the close agreement between our pharmacological and genetic studies indicates that 2-AG synthesized by postsynaptic DAGLα mediates DSI in PFC neurons.


Assuntos
Ácidos Araquidônicos/fisiologia , Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Glicerídeos/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Lipase Lipoproteica/fisiologia , Inibição Neural/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/deficiência , Isoenzimas/fisiologia , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Técnicas de Patch-Clamp , Alcamidas Poli-Insaturadas , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia
20.
Neural Plast ; 2011: 723184, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21904685

RESUMO

Schizophrenia is a brain disorder associated with cognitive deficits that severely affect the patients' capacity for daily functioning. Whereas our understanding of its pathophysiology is limited, postmortem studies suggest that schizophrenia is associated with deficits of GABA-mediated synaptic transmission. A major role of GABA-mediated transmission may be producing synchronized network oscillations which are currently hypothesized to be essential for normal cognitive function. Therefore, cognitive deficits in schizophrenia may result from a GABA synapse dysfunction that disturbs neural synchrony. Here, we highlight recent studies further suggesting alterations of GABA transmission and network oscillations in schizophrenia. We also review current models for the mechanisms of GABA-mediated synchronization of neural activity, focusing on parvalbumin-positive GABA neurons, which are altered in schizophrenia and whose function has been strongly linked to the production of neural synchrony. Alterations of GABA signaling that impair gamma oscillations and, as a result, cognitive function suggest paths for novel therapeutic interventions.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos Cognitivos/etiologia , Sincronização Cortical/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Esquizofrenia/fisiopatologia , Ácido gama-Aminobutírico/fisiologia , Animais , Relógios Biológicos , Córtex Cerebral/crescimento & desenvolvimento , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Humanos , Potenciais Pós-Sinápticos Inibidores , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Camundongos , Modelos Neurológicos , Modelos Psicológicos , Rede Nervosa/fisiopatologia , Neurônios/química , Neurônios/classificação , Parvalbuminas/análise , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Psicologia do Esquizofrênico , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA