Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 16(4): 2363-8, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26998817

RESUMO

Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences. All Raman features of WS2 monolayers are enhanced by the first-optical excitations (with an asymmetric response for the spin-orbit related XA and XB excitons), whereas Raman bands of WSe2 are not enhanced at XA/B energies. Such an intriguing phenomenon is addressed by DFT calculations and by solving the Bethe-Salpeter equation. These two materials are very similar. They prefer the same crystal arrangement, and their electronic structure is akin, with comparable spin-orbit coupling. However, we reveal that WS2 and WSe2 exhibit quite different exciton-phonon interactions. In this sense, we demonstrate that the interaction between XC and XA excitons with phonons explains the different Raman responses of WS2 and WSe2, and the absence of Raman enhancement for the WSe2 modes at XA/B energies. These results reveal unusual exciton-phonon interactions and open new avenues for understanding the two-dimensional materials physics, where weak interactions play a key role coupling different degrees of freedom (spin, optic, and electronic).

2.
J Chem Phys ; 143(10): 102813, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374006

RESUMO

The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, ß-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

3.
Phys Rev Lett ; 111(20): 208302, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289712

RESUMO

The degradation of colors in historical paintings affects our cultural heritage in both museums and archeological sites. Despite intensive experimental studies, the origin of darkening of one of the most ancient pigments known to humankind, vermilion (α-HgS), remains unexplained. Here, by combining many-body theoretical spectroscopy and high-resolution microscopic x-ray diffraction, we clarify the composition of the damaged paint work and demonstrate possible physicochemical processes, induced by illumination and exposure to humidity and air, that cause photoactivation of the original pigment and the degradation of the secondary minerals. The results suggest a new path for the darkening process which was never considered by previous studies and prompt a critical examination of their findings.

4.
Phys Rev Lett ; 110(13): 136402, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581348

RESUMO

Combining the local spin density approximation (LSDA)+U and an analysis of superexchange interactions beyond density functional theory, we describe the magnetic ground state of Cr-doped TiO2, an intensively studied and debated dilute magnetic oxide. In parallel, we correct our LSDA+U (+ superexchange) ground state through GW corrections (GW@LSDA+U) that reproduce the position of the impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a (nonrobust) ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange. The interplay between structural defects and vacancies in contributing to the superexchange is also unveiled.

5.
Phys Rev Lett ; 103(24): 247601, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20366228

RESUMO

Using first-principles calculations based on density functional theory, we study the properties of germanium telluride crystalline nanoplatelets and nanoparticles. Above a diameter of 2.7 nm, we predict the appearance of polarization vortices giving rise to an unusual ferrotoroidic ground state with a spontaneous and reversible toroidal moment of polarization. We highlight the crucial role of inhomogeneous strain in stabilizing polarization vortices. Combined with the phase-change properties of germanium telluride, the ferrotoroidic properties could be of practical interest for ternary logic applications.

6.
J Phys Condens Matter ; 21(31): 315002, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21828587

RESUMO

The present scanning tunneling microscopy (STM) study describes the growth of silver-palladium heterostructures at room temperature, with ab initio simulations of ordered AgPd phases supporting the interpretation of STM images. First, the growth of Pd on an Ag(111) surface proceeds in a multilayer mode, leading to the formation of a columnar structure. Then, upon Ag deposition on this structure, Ag and Pd partially mix and form a two-dimensional AgPd alloy on top of the columns. Finally, an atomically flat Ag(111) surface is restored, and two-dimensional growth continues. An interpretation of this peculiar growth mode including interfacial alloying is proposed based on thermodynamic and kinetic arguments.

7.
Phys Rev Lett ; 64(24): 2961, 1990 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-10041857
8.
Phys Rev Lett ; 72(11): 1686-1689, 1994 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-10055675
12.
Phys Rev B Condens Matter ; 39(18): 13120-13128, 1989 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9948209
14.
Phys Rev B Condens Matter ; 49(20): 14730-14731, 1994 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10010564
18.
Phys Rev B Condens Matter ; 41(17): 11827-11836, 1990 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9993632
19.
20.
Phys Rev B Condens Matter ; 43(6): 4579-4589, 1991 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9997825
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA