Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 145(10): 3681-3697, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35583160

RESUMO

Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.


Assuntos
Formação Reticular Mesencefálica , Traumatismos da Medula Espinal , Feminino , Ratos , Animais , Ratos Endogâmicos Lew , Traumatismos da Medula Espinal/terapia , Locomoção/fisiologia , Tronco Encefálico , Medula Espinal , Recuperação de Função Fisiológica/fisiologia
2.
Neuropathol Appl Neurobiol ; 43(3): 242-251, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28009439

RESUMO

AIMS: The search for novel drugs that enhance myelin repair in entities such as multiple sclerosis has top priority in neurological research, not least because remyelination can hinder further neurodegeneration in neuro-inflammatory conditions. Recently, several new compounds with the potential to boost remyelination have been identified using high-throughput in vitro screening methods. However, assessing their potential to enhance remyelination in vivo using plastic embedded semi-thin sections or electron microscopy, even though being the gold standard for assessing remyelination, is toxic, extremely time-consuming and expensive. METHODS: We screened available myelin dyes for a staining candidate which offers a faster and easier alternative to visualize remyelination in cryo-sections. RESULTS: We identified sudan black as a candidate with excellent myelin resolution and we show that our adapted sudan black staining can demonstrate myelin repair in rodent spinal cord cryosections as reliable as in semithin sections, but much faster, easier, less toxic and less expensive. Besides that, it can resolve the small myelinated axons in the corpus callosum. The staining can yet readily be combined with immunostainings which can be challenging in semithin sections. We validated the method in human spinal cord tissue as well as in experimental demyelination of the rat spinal cord by a lysolecithin time course experiment. As proof-of-principle, we demonstrate that sudan black is able to reliably detect the remyelination enhancing properties of benztropine. CONCLUSION: Our adapted sudan black staining can be used to rapidly and non-toxically screen for remyelinating therapies in demyelinating diseases.


Assuntos
Compostos Azo , Naftalenos , Remielinização , Medula Espinal/patologia , Coloração e Rotulagem/métodos , Animais , Doenças Desmielinizantes/patologia , Feminino , Humanos , Ratos , Ratos Long-Evans
3.
Acta Neuropathol ; 134(3): 423-440, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28646336

RESUMO

Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.


Assuntos
Axônios/imunologia , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteínas Nogo/imunologia , Remielinização/imunologia , Animais , Anticorpos/farmacologia , Axônios/efeitos dos fármacos , Axônios/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/imunologia , Inflamação/patologia , Ratos , Ratos Endogâmicos Lew , Recuperação de Função Fisiológica/fisiologia , Remielinização/efeitos dos fármacos
4.
Brain ; 137(Pt 3): 739-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355710

RESUMO

Adult Long Evans rats received a photothrombotic stroke that destroyed >90% of the sensorimotor cortex unilaterally; they were subsequently treated intrathecally for 2 weeks with a function blocking antibody against the neurite growth inhibitory central nervous system protein Nogo-A. Fine motor control of skilled forelimb grasping improved to 65% of intact baseline performance in the anti-Nogo-A treated rats, whereas control antibody treated animals recovered to only 20% of baseline scores. Bilateral retrograde tract tracing with two different tracers from the intact and the denervated side of the cervical spinal cord, at different time points post-lesion, indicated that the intact corticospinal tract had extensively sprouted across the midline into the denervated spinal hemicord. The original axonal arbours of corticospinal tract fibres that had recrossed the midline were subsequently withdrawn, leading to a complete side-switch in the projection of a subpopulation of contralesional corticospinal tract axons. Anterograde tracing from the contralesional cortex showed a 2-3-fold increase of midline crossing fibres and additionally a massive sprouting of the pre-existing ipsilateral ventral corticospinal tract fibres throughout the entire cervical enlargement of the anti-Nogo-A antibody-treated rats compared to the control group. The laminar distribution pattern of the ipsilaterally projecting corticospinal tract fibres was similar to that in the intact spinal cord. These plastic changes were paralleled by a somatotopic reorganization of the contralesional motor cortex where the formation of an ipsilaterally projecting forelimb area was observed. Intracortical microstimulation of the contralesional motor cortex revealed that low threshold currents evoked ipsilateral movements and electromyography responses at frequent cortical sites in the anti-Nogo-A, but not in the control antibody-treated animals. Subsequent transection of the spared corticospinal tract in chronically recovered animals, treated with anti-Nogo-A, led to a reappearance of the initial lesion deficit observed after the stroke lesion. These results demonstrate a somatotopic side switch anatomically and functionally in the projection of adult corticospinal neurons, induced by the destruction of one sensorimotor cortex and the neutralization of the CNS growth inhibitory protein Nogo-A.


Assuntos
Anticorpos Bloqueadores/administração & dosagem , Córtex Motor/fisiopatologia , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/imunologia , Regeneração Nervosa/imunologia , Plasticidade Neuronal/imunologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Anticorpos Bloqueadores/farmacologia , Comportamento Animal , Vértebras Cervicais , Eletromiografia , Membro Anterior/inervação , Membro Anterior/fisiopatologia , Lateralidade Funcional/fisiologia , Córtex Motor/imunologia , Proteínas da Mielina/biossíntese , Proteínas Nogo , Tratos Piramidais/imunologia , Tratos Piramidais/fisiopatologia , Ratos , Ratos Long-Evans , Acidente Vascular Cerebral/imunologia , Resultado do Tratamento
5.
Sci Rep ; 9(1): 822, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696832

RESUMO

An unmet but urgent medical need is the development of myelin repair promoting therapies for Multiple Sclerosis (MS). Many such therapies have been pre-clinically tested using different models of toxic demyelination such as cuprizone, ethidium bromide, or lysolecithin and some of the therapies already entered clinical trials. However, keeping track on all these possible new therapies and their efficacy has become difficult with the increasing number of studies. In this study, we aimed at summarizing the current evidence on such therapies through a systematic review and at providing an estimate of the effects of tested interventions by a meta-analysis. We show that 88 different therapies have been pre-clinically tested for remyelination. 25 of them (28%) entered clinical trials. Our meta-analysis also identifies 16 promising therapies which did not enter a clinical trial for MS so far, among them Pigment epithelium-derived factor, Plateled derived growth factor, and Tocopherol derivate TFA-12.We also show that failure in bench to bedside translation from certain therapies may in part be attributable to poor study quality. By addressing these problems, clinical translation might be smoother and possibly animal numbers could be reduced.


Assuntos
Esclerose Múltipla/terapia , Células Precursoras de Oligodendrócitos/citologia , Oligodendroglia/citologia , Remielinização/efeitos dos fármacos , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Etídio/toxicidade , Proteínas do Olho/farmacologia , Lisofosfatidilcolinas/toxicidade , Camundongos , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Fatores de Crescimento Neural/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Serpinas/farmacologia , Tocoferóis/farmacologia
6.
CNS Drugs ; 31(3): 187-198, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28105588

RESUMO

Most of the current therapies, as well as many of the clinical trials, for multiple sclerosis (MS) target the inflammatory autoimmune processes, but less than 20% of all clinical trials investigate potential therapies for the chronic progressive disease stage of MS. The latter is responsible for the steadily increasing disability in many patients, and there is an urgent need for novel therapies that protect nervous system tissue and enhance axonal growth and/or remyelination. As outlined in this review, solid pre-clinical data suggest neutralization of the neurite outgrowth inhibitor Nogo-A as a potential new way to achieve both axonal and myelin repair. Several phase I clinical studies with anti-Nogo-A antibodies have been conducted in different disease paradigms including MS and spinal cord injury. Data from spinal cord injury and amyotrophic lateral sclerosis (ALS) trials accredit a good safety profile of high doses of anti-Nogo-A antibodies administered intravenously or intrathecally. An antibody against a Nogo receptor subunit, leucine rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1), was recently shown to improve outcome in patients with acute optic neuritis in a phase II study. Nogo-A-suppressing antibodies could be novel drug candidates for the relapsing as well as the progressive MS disease stage. In this review, we summarize the available pre-clinical and clinical evidence on Nogo-A and elucidate the potential of Nogo-A-antibodies as a therapy for progressive MS.


Assuntos
Anticorpos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Proteínas Nogo/imunologia , Animais , Anticorpos/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Esclerose Múltipla/metabolismo
7.
Nat Protoc ; 12(1): 104-131, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27977023

RESUMO

Systemic application of therapeutics to the CNS tissue often results in subtherapeutic drug levels, because of restricted and selective penetration through the blood-brain barrier (BBB). Here, we give a detailed description of a standardized technique for intrathecal drug delivery in rodents, analogous to the technique used in humans. The intrathecal drug delivery method bypasses the BBB and thereby offers key advantages over oral or intravenous administration, such as maximized local drug doses with minimal systemic side effects. We describe how to deliver antibodies or drugs over several days or weeks from a s.c. minipump and a fine catheter inserted into the subdural space over the spinal cord (20 min operative time) or into the cisterna magna (10 min operative time). Drug levels can be sampled by quick and minimally invasive cerebrospinal fluid (CSF) collection from the cisterna magna (5 min procedure time). These techniques enable targeted application of any compound to the CNS for therapeutic studies in a wide range of CNS disease rodent models. Basic surgery skills are helpful for carrying out the procedures described in this protocol.


Assuntos
Cisterna Magna , Injeções Espinhais/métodos , Preparações Farmacêuticas/administração & dosagem , Espaço Subdural , Animais , Comportamento Animal/efeitos dos fármacos , Catéteres , Cisterna Magna/metabolismo , Feminino , Injeções Espinhais/instrumentação , Masculino , Preparações Farmacêuticas/metabolismo , Ratos , Espaço Subdural/metabolismo , Fatores de Tempo
8.
Neurosci Lett ; 648: 41-46, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363754

RESUMO

One main pathological hallmark of multiple sclerosis (MS) is demyelination. Novel therapies which enhance myelin repair are urgently needed. Insulin and insulin-like growth factor 1 (IGF-1) have strong functional relationships. Here, we addressed the potential capacity of IGF-1 and insulin to enhance remyelination in an animal demyelination model in vivo. We found that chronic intrathecal infusion of IGF-1 enhanced remyelination after lysolecithin-induced demyelination in the spinal cord of young and aged rats. Aged rats showed a weaker innate remyelination capacity and are therefore a good model for progressive MS which is defined by chronic demyelination. In contrast to IGF-1, Insulin had no effect on remyelination in either age group. Our findings highlight the potential use of IGF-1 as remyelinating therapy for MS, particularly the progressive stage in which chronic demyelination is the hallmark.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Fator de Crescimento Insulin-Like I/administração & dosagem , Insulina/administração & dosagem , Bainha de Mielina/efeitos dos fármacos , Animais , Glicemia , Contagem de Células , Doenças Desmielinizantes/induzido quimicamente , Feminino , Injeções Espinhais , Lisofosfatidilcolinas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA