Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Virol ; 90(20): 9446-56, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512068

RESUMO

UNLABELLED: We have previously shown that IFIT1 is primarily responsible for the antiviral action of interferon (IFN) alpha/beta against parainfluenza virus type 5 (PIV5), selectively inhibiting the translation of PIV5 mRNAs. Here we report that while PIV2, PIV5, and mumps virus (MuV) are sensitive to IFIT1, nonrubulavirus members of the paramyxoviridae such as PIV3, Sendai virus (SeV), and canine distemper virus (CDV) are resistant. The IFIT1 sensitivity of PIV5 was not rescued by coinfection with an IFIT1-resistant virus (PIV3), demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an in vitro translation system using purified human IFIT1 to further investigate the mechanism of action of IFIT1. While the translations of PIV2, PIV5, and MuV mRNAs were directly inhibited by IFIT1, the translations of PIV3, SeV, and CDV mRNAs were not. Using purified human mRNA-capping enzymes, we show biochemically that efficient inhibition by IFIT1 is dependent upon a 5' guanosine nucleoside cap (which need not be N7 methylated) and that this sensitivity is partly abrogated by 2'O methylation of the cap 1 ribose. Intriguingly, PIV5 M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in vitro 2'O methylation, suggesting that other structural features of mRNAs may influence their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2'-O-methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by IFIT1. Possible biological consequences of this are discussed. IMPORTANCE: Paramyxoviruses cause a wide variety of diseases, and yet most of their genes encode structural proteins and proteins involved in their replication cycle. Thus, the amount of genetic information that determines the type of disease that paramyxoviruses cause is relatively small. One factor that will influence disease outcomes is how they interact with innate host cell defenses, including the interferon (IFN) system. Here we show that different paramyxoviruses interact in distinct ways with cells in a preexisting IFN-induced antiviral state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of ISG56/IFIT1, while all the other paramyxoviruses tested were resistant. We developed novel in vitro biochemical assays to investigate the mechanism of action of IFIT1, demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that this is at least partially because their mRNAs are not correctly methylated.


Assuntos
Proteínas de Transporte/farmacologia , Paramyxoviridae/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Rubulavirus/genética , Células A549 , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Humanos , Interferon-alfa/metabolismo , Metilação , Vírus da Caxumba/genética , Vírus da Parainfluenza 5/genética , Capuzes de RNA/genética , RNA Viral/genética , Proteínas de Ligação a RNA , Vírus Sendai/genética , Replicação Viral/genética
2.
J Virol ; 87(9): 4798-807, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449801

RESUMO

Preparations of parainfluenza virus 5 (PIV5) that are potent activators of the interferon (IFN) induction cascade were generated by high-multiplicity passage in order to accumulate defective interfering virus genomes (DIs). Nucleocapsid RNA from these virus preparations was extracted and subjected to deep sequencing. Sequencing data were analyzed using methods designed to detect internal deletion and "copyback" DIs in order to identify and characterize the different DIs present and to approximately quantify the ratio of defective to nondefective genomes. Trailer copybacks dominated the DI populations in IFN-inducing preparations of both the PIV5 wild type (wt) and PIV5-VΔC (a recombinant virus that does not encode a functional V protein). Although the PIV5 V protein is an efficient inhibitor of the IFN induction cascade, we show that nondefective PIV5 wt is unable to prevent activation of the IFN response by coinfecting copyback DIs due to the interfering effects of copyback DIs on nondefective virus protein expression. As a result, copyback DIs are able to very rapidly activate the IFN induction cascade prior to the expression of detectable levels of V protein by coinfecting nondefective virus.


Assuntos
Vírus Defeituosos/genética , Genoma Viral , Infecções por Rubulavirus/imunologia , Infecções por Rubulavirus/virologia , Rubulavirus/genética , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interferons/genética , Interferons/imunologia , Infecções por Rubulavirus/genética , Proteínas Virais/genética
3.
J Gen Virol ; 94(Pt 1): 59-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23052390

RESUMO

Interferon (IFN) induces an antiviral state in cells that results in alterations of the patterns and levels of parainfluenza virus type 5 (PIV5) transcripts and proteins. This study reports that IFN-stimulated gene 56/IFN-induced protein with tetratricopeptide repeats 1 (ISG56/IFIT1) is primarily responsible for these effects of IFN. It was shown that treating cells with IFN after infection resulted in an increase in virus transcription but an overall decrease in virus protein synthesis. As there was no obvious decrease in the overall levels of cellular protein synthesis in infected cells treated with IFN, these results suggested that ISG56/IFIT1 selectively inhibits the translation of viral mRNAs. This conclusion was supported by in vitro translation studies. Previous work has shown that ISG56/IFIT1 can restrict the replication of viruses lacking a 2'-O-methyltransferase activity, an enzyme that methylates the 2'-hydroxyl group of ribose sugars in the 5'-cap structures of mRNA. However, the data in the current study strongly suggested that PIV5 mRNAs are methylated at the 2'-hydroxyl group and thus that ISG56/IFIT1 selectively inhibits the translation of PIV5 mRNA by some as yet unrecognized mechanism. It was also shown that ISG56/IFIT1 is primarily responsible for the IFN-induced inhibition of PIV5.


Assuntos
Proteínas de Transporte/biossíntese , Interferon-alfa/farmacologia , Infecções por Respirovirus/virologia , Respirovirus/efeitos dos fármacos , Respirovirus/genética , Proteínas Virais/biossíntese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Replicação do DNA , Técnicas de Silenciamento de Genes , Humanos , Interferon alfa-2 , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes/farmacologia , Respirovirus/metabolismo , Infecções por Respirovirus/tratamento farmacológico , Infecções por Respirovirus/metabolismo , Transcrição Gênica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
4.
J Gen Virol ; 93(Pt 2): 299-307, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22049094

RESUMO

Conflicting reports exist regarding the requirement for virus replication in interferon (IFN) induction by paramyxoviruses. Our previous work has demonstrated that pathogen-associated molecular patterns capable of activating the IFN-induction cascade are not normally generated during virus replication, but are associated instead with the presence of defective interfering (DI) viruses. We demonstrate here that DIs of paramyxoviruses, including parainfluenza virus 5, mumps virus and Sendai virus, can activate the IFN-induction cascade and the IFN-ß promoter in the absence of virus protein synthesis. As virus protein synthesis is an absolute requirement for paramyxovirus genome replication, our results indicate that these DI viruses do not require replication to activate the IFN-induction cascade.


Assuntos
Interferon beta/biossíntese , Interferon beta/genética , Paramyxoviridae/imunologia , Paramyxoviridae/fisiologia , Regiões Promotoras Genéticas , Ativação Transcricional , Replicação Viral , Animais , Linhagem Celular , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Humanos , Paramyxoviridae/genética , Rubulavirus , Proteínas Virais/biossíntese
5.
J Virol ; 83(3): 1465-73, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19019954

RESUMO

The RNA helicases encoded by melanoma differentiation-associated gene 5 (mda-5) and retinoic acid-inducible gene I (RIG-I) detect foreign cytoplasmic RNA molecules generated during the course of a virus infection, and their activation leads to induction of type I interferon synthesis. Paramyxoviruses limit the amount of interferon produced by infected cells through the action of their V protein, which binds to and inhibits mda-5. Here we show that activation of both mda-5 and RIG-I by double-stranded RNA (dsRNA) leads to the formation of homo-oligomers through self-association of the helicase domains. We identify a region within the helicase domain of mda-5 that is targeted by all paramyxovirus V proteins and demonstrate that they inhibit activation of mda-5 by blocking dsRNA binding and consequent self-association. In addition to this commonly targeted domain, some paramyxovirus V proteins target additional regions of mda-5. In contrast, V proteins cannot bind to RIG-I and consequently have no effect on the ability of RIG-I to bind dsRNA or to form oligomers.


Assuntos
RNA Helicases DEAD-box/antagonistas & inibidores , Paramyxoviridae/fisiologia , Proteínas Virais/fisiologia , Animais , Biopolímeros , Linhagem Celular , Chlorocebus aethiops , RNA Helicases DEAD-box/metabolismo , Humanos , Hidrólise , Helicase IFIH1 Induzida por Interferon , Técnicas do Sistema de Duplo-Híbrido , Células Vero
6.
Science ; 236(4806): 1237-45, 1987 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-3296191

RESUMO

Molecular genetics approaches have been used to identify and characterize cis-acting DNA sequences required for eukaryotic gene regulation. These sequences are modular in nature, consisting of arrays of short (10- to 12-base pair) recognition elements that interact with specific transcription factors. Some transcription factors have been extensively purified and the corresponding genes have been cloned, but the mechanisms by which they promote transcription are not yet understood. Positive and negative regulatory elements that function only in specific cell types or in response to extracellular inducers have been identified. A number of cases of inducible and tissue-specific gene expression involve the activation of preexisting transcription factors, rather than the synthesis of new proteins. This activation may involve covalent modification of the protein or an allosteric change in its structure. The modification of regulatory proteins may play a central role in the mechanisms of eukaryotic gene regulation.


Assuntos
Regulação da Expressão Gênica , Animais , Elementos Facilitadores Genéticos , Células Eucarióticas , Previsões , Genes Reguladores , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas , Fatores de Transcrição , Vírus/genética
7.
Curr Biol ; 4(10): 930-2, 1994 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-7850432

RESUMO

Assembly of the activated T-cell transcription factor, NF-AT, from two different types of subunit is sensitive to immunosuppressive drugs and is a striking example of gene regulation by convergent intracellular signals.


Assuntos
Proteínas de Ligação a DNA/análise , Regulação da Expressão Gênica , Imunossupressores/farmacologia , Ativação Linfocitária , Proteínas Nucleares , Linfócitos T/imunologia , Fatores de Transcrição/análise , Transcrição Gênica , Animais , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC , Fatores de Transcrição/genética
8.
Mol Cell Biol ; 12(3): 1096-106, 1992 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1347642

RESUMO

The cyclic AMP (cAMP) response elements (CREs) of the somatostatin and vasoactive intestinal peptide (VIP) promoters contain binding sites for CRE-binding protein (CREB) that are essential for cAMP-regulated transcription. Using F9 embryonal carcinoma cells, we show that the somatostatin and VIP promoters exhibit a differentiation-dependent cAMP response, demonstrating that these promoters are regulated by transcription factors that become active during differentiation. Lack of cAMP responsiveness of the somatostatin promoter in undifferentiated cells is not due to the absence of known positive-acting factors (the catalytic subunit of protein kinase A [cPKA] and CREB) or a general inhibition of protein kinase A activity. Since overexpression of exogenous cPKA and CREB is sufficient to activate the somatostatin promoter in undifferentiated cells, these findings suggest that a negative factor(s) represses endogenous cPKA and CREB. In contrast to their effects on somatostatin, exogenous CREB and cPKA do not activate the VIP promoter. Thus, despite coregulation during differentiation and the ability to bind CREB, the somatostatin and VIP promoters are not coordinately activated by CREB in undifferentiated F9 cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Somatostatina/genética , Sequência de Bases , Western Blotting , Catálise , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , DNA , Células-Tronco de Carcinoma Embrionário , Regulação da Expressão Gênica , Dados de Sequência Molecular , Células-Tronco Neoplásicas , Proteínas Quinases/química , Células Tumorais Cultivadas , Peptídeo Intestinal Vasoativo/genética
9.
Sci Rep ; 7(1): 17485, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235573

RESUMO

The spontaneously immortalised DF-1 cell line is rapidly replacing its progenitor primary chicken embryo fibroblasts (CEFs) for studies on avian viruses such as avian influenza but no comprehensive study has as yet been reported comparing their innate immunity phenotypes. We conducted microarray analyses of DF-1 and CEFs, under both normal and stimulated conditions using chicken interferon-α (chIFN-α) and the attenuated infectious bursal disease virus vaccine strain PBG98. We found that DF-1 have an attenuated innate response compared to CEFs. Basal expression levels of Suppressor of Cytokine Signalling 1 (chSOCS1), a negative regulator of cytokine signalling in mammals, are 16-fold higher in DF-1 than in CEFs. The chSOCS1 "SOCS box" domain (which in mammals, interacts with an E3 ubiquitin ligase complex) is not essential for the inhibition of cytokine-induced JAK/STAT signalling activation in DF-1. Overexpression of SOCS1 in chIFN-α-stimulated DF-1 led to a relative decrease in expression of interferon-stimulated genes (ISGs; MX1 and IFIT5) and increased viral yield in response to PBG98 infection. Conversely, knockdown of SOCS1 enhanced induction of ISGs and reduced viral yield in chIFN-α-stimulated DF-1. Consequently, SOCS1 reduces induction of the IFN signalling pathway in chicken cells and can potentiate virus replication.


Assuntos
Proteínas Aviárias/metabolismo , Fibroblastos/imunologia , Imunidade Inata/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Proteínas Aviárias/genética , Doenças das Aves/imunologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Linhagem Celular , Proliferação de Células/fisiologia , Galinhas , Expressão Gênica , Técnicas de Silenciamento de Genes , Vírus da Doença Infecciosa da Bursa , Interferon-alfa/metabolismo , Janus Quinases/metabolismo , Análise em Microsséries , Cultura Primária de Células , Fatores de Transcrição STAT/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética
10.
Essays Biochem ; 37: 71-85, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11758458

RESUMO

Transcriptional initiation is regulated by altering the properties of promoter-specific DNA-binding proteins, such that these proteins either show altered interaction with the basal transcriptional machinery, or show changes in their cytoplasmic/nuclear distribution. Information is passed from the receptor to the transcription factor by a process of post-translational modifications of pathway components. Post-translational modifications can include phosphorylations or dephosphorylations, which are reversible, and proteolysis, which is irreversible. Specificity within a linear signal transduction pathway is preserved by the existence of scaffold proteins, which serve to co-localize many of the factors from a given linear pathway.


Assuntos
Núcleo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transdução de Sinais , Animais , Apoptose , Diferenciação Celular , Dimerização , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína
11.
Mol Endocrinol ; 9(2): 255-65, 1995 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7776975

RESUMO

We have investigated the molecular basis of the variability of the somatostatin cAMP response element (CRE) function in different cell lines. All cells tested contain detectable levels of the CRE-binding protein CREB-1, which mediates transactivation in response to the cAMP-dependent protein kinase (protein kinase-A), in forms that can bind to a somatostatin CRE. Although both responsive and nonresponsive cells contain CREB-1 in heterodimers with activating transcription factor-1 (ATF-1), only cells that allow a cAMP response have a significant proportion of CREB-1 in a homodimeric form. Transfection experiments demonstrate that ATF-1 is capable of antagonizing CREB-1-dependent activation, suggesting that the ability of CREB-1 to mediate a cAMP response is down-regulated by heterodimer formation with ATF-1.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Regulação para Baixo , Sequências Reguladoras de Ácido Nucleico , Somatostatina/genética , Fatores de Transcrição/metabolismo , Fator 1 Ativador da Transcrição , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/biossíntese , Ativação Transcricional , Transfecção
12.
J Mol Endocrinol ; 14(2): 191-8, 1995 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-7619208

RESUMO

In this report we identify novel spliced forms of cyclic AMP (cAMP) response element-binding protein-1 (CREB-1) mRNA. These forms contained an additional 17 nucleotide insert, which we refer to as the beta exon, located between exons 4 and 7 of the delta, and 5 and 7 of the alpha forms of CREB-1 transcript (nomenclature of Ruppert et al. 1992; EMBO Journal 11, 1503-1512). The inclusion of the beta exon led to the generation of mRNAs in which the frame of CREB-1 sequences 3' to the exon was shifted such that the encoded proteins terminate after the transactivation domain, but before the target serine for cAMP-dependent protein kinase. The beta exon-containing CREB-1 mRNAs were more abundant in tissues that respond poorly to cAMP, suggesting that the generation of beta CREB-1 mRNAs may contribute to the down-regulation of CREB-1 activity and cAMP responsiveness.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , AMP Cíclico/fisiologia , Regulação para Baixo/genética , Splicing de RNA , RNA Mensageiro/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Coriocarcinoma/genética , Coriocarcinoma/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/classificação , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Éxons/genética , Feminino , Células HeLa/química , Humanos , Camundongos , Dados de Sequência Molecular , Placenta/química , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Ratos , Células Tumorais Cultivadas , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
13.
Virology ; 415(1): 39-46, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21511322

RESUMO

It is generally thought that pathogen-associated molecular patterns (PAMPs) responsible for triggering interferon (IFN) induction are produced during virus replication and, to limit the activation of the IFN response by these PAMPs, viruses encode antagonists of IFN induction. Here we have studied the induction of IFN by parainfluenza virus type 5 (PIV5) at the single-cell level, using a cell line expressing GFP under the control of the IFN-ß promoter. We demonstrate that a recombinant PIV5 (termed PIV5-VΔC) that lacks a functional V protein (the viral IFN antagonist) does not activate the IFN-ß promoter in the majority of infected cells. We conclude that viral PAMPs capable of activating the IFN induction cascade are not produced or exposed during the normal replication cycle of PIV5, and suggest instead that defective viruses are primarily responsible for inducing IFN during PIV5 infection in this system.


Assuntos
Interferon beta/antagonistas & inibidores , Interferon beta/genética , Regiões Promotoras Genéticas , Rubulavirus/fisiologia , Proteínas Virais/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Imunofluorescência , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Immunoblotting , Interferon beta/metabolismo , Mutação , Rubulavirus/genética , Células Vero , Proteínas Virais/genética , Replicação Viral
15.
Virology ; 407(2): 247-55, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20833406

RESUMO

The infection of cells by RNA viruses is associated with the recognition of virus PAMPs (pathogen-associated molecular patterns) and the production of type I interferon (IFN). To counter this, most, if not all, RNA viruses encode antagonists of the IFN system. Here we present data on the dynamics of IFN production and response during developing infections by paramyxoviruses, influenza A virus and bunyamwera virus. We show that only a limited number of infected cells are responsible for the production of IFN, and that this heterocellular production is a feature of the infecting virus as opposed to an intrinsic property of the cells.


Assuntos
Vírus Bunyamwera/patogenicidade , Vírus da Influenza A/patogenicidade , Interferon Tipo I/metabolismo , Rim/virologia , Pulmão/virologia , Paramyxoviridae/patogenicidade , Animais , Vírus Bunyamwera/imunologia , Linhagem Celular Tumoral/virologia , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/imunologia , Interferon Tipo I/genética , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Rim/citologia , Rim/imunologia , Pulmão/citologia , Pulmão/imunologia , Paramyxoviridae/imunologia , Especificidade da Espécie , Células Vero/virologia , Replicação Viral
17.
Virology ; 368(1): 114-21, 2007 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17640695

RESUMO

A dynamic model of STAT1 degradation by the V protein of parainfluenza virus 5 (PIV5; formerly SV5) has been proposed. In it, the V protein functions as a bipartite adaptor linking DDB1, a component of a cellular SCF-like ubiquitin E3 ligase complex, to STAT2, which in turn binds STAT1 and presents STAT1 to the E3 ligase complex for ubiquitination and subsequent degradation. Furthermore, it appears that loss of STAT1 from the complex results in decreased affinity of V for STAT2 such that STAT2 either dissociates from V or is displaced by STAT1/STAT2 complexes, facilitating the cycling of the DDB1/PIV5 V containing E3 complex for further rounds of STAT1 ubiquitination and degradation. By determining the approximate number of molecules of V, DDB1, STAT1 and STAT2 present in IFN-treated 2fTGH cells, we provide additional evidence for this dynamic model of STAT1 degradation. These results show that (i) in IFN-treated cells there is approximately 4-fold less STAT2 and 15-fold less DDB1 than STAT1 per cell and thus DDB1 and STAT2 must repeatedly acquire more STAT1 for degradation to go to completion, and (ii) approximately 600 molecules of V protein per cell can target as many as 120,000 molecules of STAT1 for degradation in the absence of either viral or cellular protein synthesis. The importance of this mechanism in terms of the ability of the virus to dismantle the IFN-induced anti-viral state of cells is discussed.


Assuntos
Interferons/imunologia , Vírus da Parainfluenza 5/imunologia , Fator de Transcrição STAT1/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
J Gen Virol ; 88(Pt 3): 956-966, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17325370

RESUMO

Mapuera virus (MPRV) is a paramyxovirus that was originally isolated from bats, but its host range remains unknown. It was classified as a member of the genus Rubulavirus on the basis of structural and genetic features. Like other rubulaviruses it encodes a V protein (MPRV/V) that functions as an interferon (IFN) antagonist. Here we show that MPRV/V differs from the IFN antagonists of other rubulaviruses in that it does not induce the proteasomal degradation of STAT proteins, key factors in the IFN signalling cascade. Rather, MPRV/V prevents the nuclear translocation of STATs in response to IFN stimulation and inhibits the formation of the transcription factor complex ISGF3. We also show that MPRV/V blocks IFN signalling in cells from diverse mammalian species and discuss the IFN response as a barrier to cross-species infections.


Assuntos
Interferons/antagonistas & inibidores , Rubulavirus/imunologia , Fatores de Transcrição STAT/metabolismo , Proteínas Virais/fisiologia , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Fator Gênico 3 Estimulado por Interferon/metabolismo , Interferons/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Proteínas Virais/genética
19.
J Virol ; 81(5): 2318-27, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17182679

RESUMO

Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.


Assuntos
Vírus da Influenza A/patogenicidade , Interferon Tipo I/biossíntese , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Cães , Expressão Gênica , Humanos , Imunidade Inata , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Replicação Viral
20.
Virology ; 347(1): 52-64, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16378631

RESUMO

We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression from both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity.


Assuntos
Vírus da Influenza A/imunologia , Interferon beta/biossíntese , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , DNA Viral/genética , Genes Reporter , Genes Virais , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Interferon beta/genética , Regiões Promotoras Genéticas , RNA de Cadeia Dupla/genética , Recombinação Genética , Transdução de Sinais , Células Vero , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA