Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 19(28): e2301383, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36971287

RESUMO

Thermal transport in polymer nanocomposites becomes dependent on the interfacial thermal conductance due to the ultra-high density of the internal interfaces when the polymer and filler domains are intimately mixed at the nanoscale. However, there is a lack of experimental measurements that can link the thermal conductance across the interfaces to the chemistry and bonding between the polymer molecules and the glass surface. Characterizing the thermal properties of amorphous composites are a particular challenge as their low intrinsic thermal conductivity leads to poor measurement sensitivity of the interfacial thermal conductance. To address this issue here, polymers are confined in porous organosilicates with high interfacial densities, stable composite structure, and varying surface chemistries. The thermal conductivities and fracture energies of the composites are measured with frequency dependent time-domain thermoreflectance (TDTR) and thin-film fracture testing, respectively. Effective medium theory (EMT) along with finite element analysis (FEA) is then used to uniquely extract the thermal boundary conductance (TBC) from the measured thermal conductivity of the composites. Changes in TBC are then linked to the hydrogen bonding between the polymer and organosilicate as quantified by Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. This platform for analysis is a new paradigm in the experimental investigation of heat flow across constituent domains.

2.
Nano Lett ; 22(13): 5443-5450, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35715219

RESUMO

Designing materials with ultralow thermal conductivity has broad technological impact, from thermal protection to energy harvesting. Low thermal conductivity is commonly observed in anharmonic and strongly disordered materials, yet a microscopic understanding of the correlation to atomic motion is often lacking. Here we report that molecular insertion into an existing two-dimensional layered lattice structure creates a hybrid superlattice with extremely low thermal conductivity. Vibrational characterization and ab initio molecular dynamics simulations reveal strong damping of transverse acoustic waves and significant softening of longitudinal vibrations. Together with spectral correlation analysis, we demonstrate that the molecular insertion creates liquid-like atomic motion in the existing lattice framework, causing a large suppression of heat conduction. The hybrid materials can be transformed into solution-processable coatings and used for thermal protection in wearable electronics. Our work provides a generic mechanism for the design of heat insulators and may further facilitate the engineering of heat conduction based on understanding atomic correlations.


Assuntos
Eletrônica , Temperatura Alta , Movimento (Física) , Condutividade Térmica , Vibração
3.
Nano Lett ; 22(15): 6285-6291, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876819

RESUMO

Superlattice (SL) phase change materials have shown promise to reduce the switching current and resistance drift of phase change memory (PCM). However, the effects of internal SL interfaces and intermixing on PCM performance remain unexplored, although these are essential to understand and ensure reliable memory operation. Here, using nanometer-thin layers of Ge2Sb2Te5 and Sb2Te3 in SL-PCM, we uncover that both switching current density (Jreset) and resistance drift coefficient (v) decrease as the SL period thickness is reduced (i.e., higher interface density); however, interface intermixing within the SL increases both. The signatures of distinct versus intermixed interfaces also show up in transmission electron microscopy, X-ray diffraction, and thermal conductivity measurements of our SL films. Combining the lessons learned, we simultaneously achieve low Jreset ≈ 3-4 MA/cm2 and ultralow v ≈ 0.002 in mushroom-cell SL-PCM with ∼110 nm bottom contact diameter, thus advancing SL-PCM technology for high-density storage and neuromorphic applications.


Assuntos
Condutividade Térmica , Difração de Raios X
4.
Langmuir ; 38(1): 221-230, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34967627

RESUMO

As electronic device power densities continue to increase, vapor chambers and heat pipes have emerged as effective thermal management solutions for hotspot mitigation. A crucial aspect of vapor chamber functionality depends on the properties of the microporous wick that drives heat and mass transport within the device. While many prior studies have focused on the optimization of these porous structures to increase the maximum capillary-limited dryout heat flux, an equally important aspect of porous wick design is the minimization of the thermal resistance above heated areas. Segmented wicks with geometries that vary along the length of the wick are attractive candidates that can potentially be used to fulfill these simultaneous design goals. Previous studies on bisegmented wicks with only two distinct adiabatic and heated region geometries, however, have shown mixed results regarding the degree of performance benefit over homogeneous wicks. In this work, we present a systematic modeling approach to investigate the optimal composition of segmented micropillar wicks comprising multiple, discrete regions of graded geometry. Using a genetic algorithm, we generate Pareto fronts of optimal segmented wick distributions that maximize the dryout heat flux and minimize the thermal resistance for a given heating configuration. We find that optimal, graded segmented wicks are capable of dissipating dryout heat fluxes more than 200% higher than baseline homogeneous wicks with significantly lower thermal resistance. The sensitivity of the wick performance to the total number of geometry segments is found to vary depending on the desired heat flux and thermal resistance operating regimes.

5.
Nano Lett ; 21(14): 5984-5990, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34270270

RESUMO

Superlattice-like phase change memory (SL-PCM) promises lower switching current than conventional PCM based on Ge2Sb2Te5 (GST); however, a fundamental understanding of SL-PCM requires detailed characterization of the interfaces within such an SL. Here we explore the electrical and thermal transport of SLs with deposited Sb2Te3 and GeTe alternating layers of various thicknesses. We find up to an approximately four-fold reduction of the effective cross-plane thermal conductivity of the SL stack (as-deposited polycrystalline) compared with polycrystalline GST (as-deposited amorphous and later annealed) due to the thermal interface resistances within the SL. Thermal measurements with varying periods of our SLs show a signature of phonon coherence with a transition from wave-like to particle-like phonon transport, further described by our modeling. Electrical resistivity measurements of such SLs reveal strong anisotropy (∼2000×) between the in-plane and cross-plane directions due to the weakly interacting van der Waals-like gaps. This work uncovers electrothermal transport in SLs based on Sb2Te3 and GeTe for the improved design of low-power PCM.

6.
Nanotechnology ; 32(26)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33601363

RESUMO

Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.

7.
Nano Lett ; 19(4): 2434-2442, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30808167

RESUMO

Layered two-dimensional (2D) materials have highly anisotropic thermal properties between the in-plane and cross-plane directions. Conventionally, it is thought that cross-plane thermal conductivities (κ z) are low, and therefore c-axis phonon mean free paths (MFPs) are small. Here, we measure κ z across MoS2 films of varying thickness (20-240 nm) and uncover evidence of very long c-axis phonon MFPs at room temperature in these layered semiconductors. Experimental data obtained using time-domain thermoreflectance (TDTR) are in good agreement with first-principles density functional theory (DFT). These calculations suggest that ∼50% of the heat is carried by phonons with MFP > 200 nm, exceeding kinetic theory estimates by nearly 2 orders of magnitude. Because of quasi-ballistic effects, the κ z of nanometer-thin films of MoS2 scales with their thickness and the volumetric thermal resistance asymptotes to a nonzero value, ∼10 m2 K GW-1. This contributes as much as 30% to the total thermal resistance of a 20 nm thick film, the rest being limited by thermal interface resistance with the SiO2 substrate and top-side aluminum transducer. These findings are essential for understanding heat flow across nanometer-thin films of MoS2 for optoelectronic and thermoelectric applications.

8.
Nano Lett ; 18(6): 3466-3472, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29631399

RESUMO

Understanding the impact of lattice imperfections on nanoscale thermal transport is crucial for diverse applications ranging from thermal management to energy conversion. Grain boundaries (GBs) are ubiquitous defects in polycrystalline materials, which scatter phonons and reduce thermal conductivity (κ). Historically, their impact on heat conduction has been studied indirectly through spatially averaged measurements, that provide little information about phonon transport near a single GB. Here, using spatially resolved time-domain thermoreflectance (TDTR) measurements in combination with electron backscatter diffraction (EBSD), we make localized measurements of κ within few µm of individual GBs in boron-doped polycrystalline diamond. We observe strongly suppressed thermal transport near GBs, a reduction in κ from ∼1000 W m-1 K-1 at the center of large grains to ∼400 W m-1 K-1 in the immediate vicinity of GBs. Furthermore, we show that this reduction in κ is measured up to ∼10 µm away from a GB. A theoretical model is proposed that captures the local reduction in phonon mean-free-paths due to strongly diffuse phonon scattering at the disordered grain boundaries. Our results provide a new framework for understanding phonon-defect interactions in nanomaterials, with implications for the use of high-κ polycrystalline materials as heat sinks in electronics thermal management.

9.
Nat Mater ; 16(9): 892-897, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28759031

RESUMO

The potential impact of encapsulated molecules on the thermal properties of individual carbon nanotubes (CNTs) has been an important open question since the first reports of the strong modulation of electrical properties in 2002. However, thermal property modulation has not been demonstrated experimentally because of the difficulty of realizing CNT-encapsulated molecules as part of thermal transport microstructures. Here we develop a nanofabrication strategy that enables measurement of the impact of encapsulation on the thermal conductivity (κ) and thermopower (S) of single CNT bundles that encapsulate C 60, Gd@C 82 and Er 2@C 82. Encapsulation causes 35-55% suppression in κ and approximately 40% enhancement in S compared with the properties of hollow CNTs at room temperature. Measurements of temperature dependence from 40 to 320 K demonstrate a shift of the peak in the κ to lower temperature. The data are consistent with simulations accounting for the interaction between CNTs and encapsulated fullerenes.

10.
Nano Lett ; 16(4): 2754-61, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26986050

RESUMO

Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.

11.
Proc Natl Acad Sci U S A ; 110(51): 20426-30, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24309375

RESUMO

Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties.

12.
Nano Lett ; 15(10): 6809-14, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26308280

RESUMO

Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

13.
Nano Lett ; 14(6): 3419-26, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24798660

RESUMO

Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

14.
Sci Adv ; 10(20): eadn8980, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748793

RESUMO

Understanding the limits of spatiotemporal carrier dynamics, especially in III-V semiconductors, is key to designing ultrafast and ultrasmall optoelectronic components. However, identifying such limits and the properties controlling them has been elusive. Here, using scanning ultrafast electron microscopy, in bulk n-GaAs and p-InAs, we simultaneously measure picosecond carrier dynamics along with three related quantities: subsurface band bending, above-surface vacuum potentials, and surface trap densities. We make two unexpected observations. First, we uncover a negative-time contrast in secondary electrons resulting from an interplay among these quantities. Second, despite dopant concentrations and surface state densities differing by many orders of magnitude between the two materials, their carrier dynamics, measured by photoexcited band bending and filling of surface states, occur at a seemingly common timescale of about 100 ps. This observation may indicate fundamental kinetic limits tied to a multitude of material and surface properties of optoelectronic III-V semiconductors and highlights the need for techniques that simultaneously measure electro-optical kinetic properties.

15.
Nano Lett ; 12(2): 683-6, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22224582

RESUMO

While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films.


Assuntos
Membranas Artificiais , Nanopartículas Metálicas/química , Platina/química , Condutividade Térmica , Condutividade Elétrica , Tamanho da Partícula , Propriedades de Superfície
16.
Nano Lett ; 12(6): 3121-6, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22563928

RESUMO

Thermal conduction in periodic multilayer composites can be strongly influenced by nonequilibrium electron-phonon scattering for periods shorter than the relevant free paths. Here we argue that two additional mechanisms-quasiballistic phonon transport normal to the metal film and inelastic electron-interface scattering-can also impact conduction in metal/dielectric multilayers with a period below 10 nm. Measurements use the 3ω method with six different bridge widths down to 50 nm to extract the in- and cross-plane effective conductivities of Mo/Si (2.8 nm/4.1 nm) multilayers, yielding 15.4 and 1.2 W/mK, respectively. The cross-plane thermal resistance is lower than can be predicted considering volume and interface scattering but is consistent with a new model built around a film-normal length scale for phonon-electron energy conversion in the metal. We introduce a criterion for the transition from electron to phonon dominated heat conduction in metal films bounded by dielectrics.


Assuntos
Modelos Químicos , Molibdênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Simulação por Computador , Temperatura Alta , Tamanho da Partícula , Condutividade Térmica
17.
Nat Commun ; 14(1): 3465, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308496

RESUMO

Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of [Formula: see text]. Remarkably, Sb2S3 is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.

18.
iScience ; 26(1): 105812, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36624838

RESUMO

An estimated 70% of the electricity in the United States currently passes through power conversion electronics, and this percentage is projected to increase eventually to up to 100%. At a global scale, wide adoption of highly efficient power electronics technologies is thus anticipated to have a major impact on worldwide energy consumption. As described in this perspective, for power conversion, outstanding thermal management for semiconductor devices is one key to unlocking this potentially massive energy savings. Integrated microscale cooling has been positively identified for such thermal management of future high-heat-flux, i.e., 1 kW/cm2, wide-bandgap (WBG) semiconductor devices. In this work, we connect this advanced cooling approach to the energy impact of using WBG devices and further present a techno-economic analysis to clarify the projected status of performance, manufacturing approaches, fabrication costs, and remaining barriers to the adoption of such cooling technology.

19.
Adv Mater ; 35(30): e2300107, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36720651

RESUMO

Phase-change memory (PCM) is a promising candidate for neuro-inspired, data-intensive artificial intelligence applications, which relies on the physical attributes of PCM materials including gradual change of resistance states and multilevel operation with low resistance drift. However, achieving these attributes simultaneously remains a fundamental challenge for PCM materials such as Ge2 Sb2 Te5 , the most commonly used material. Here bi-directional gradual resistance changes with ≈10× resistance window using low energy pulses are demonstrated in nanoscale PCM devices based on Ge4 Sb6 Te7 , a new phase-change nanocomposite material . These devices show 13 resistance levels with low resistance drift for the first 8 levels, a resistance on/off ratio of ≈1000, and low variability. These attributes are enabled by the unique microstructural and electro-thermal properties of Ge4 Sb6 Te7 , a nanocomposite consisting of epitaxial SbTe nanoclusters within the Ge-Sb-Te matrix, and a higher crystallization but lower melting temperature than Ge2 Sb2 Te5 . These results advance the pathway toward energy-efficient analog computing using PCM.

20.
ACS Nano ; 17(21): 21240-21250, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796248

RESUMO

Aluminum nitride (AlN) is one of the few electrically insulating materials with excellent thermal conductivity, but high-quality films typically require exceedingly hot deposition temperatures (>1000 °C). For thermal management applications in dense or high-power integrated circuits, it is important to deposit heat spreaders at low temperatures (<500 °C), without affecting the underlying electronics. Here, we demonstrate 100 nm to 1.7 µm thick AlN films achieved by low-temperature (<100 °C) sputtering, correlating their thermal properties with their grain size and interfacial quality, which we analyze by X-ray diffraction, transmission X-ray microscopy, as well as Raman and Auger spectroscopy. Controlling the deposition conditions through the partial pressure of reactive N2, we achieve an ∼3× variation in thermal conductivity (∼36-104 W m-1 K-1) of ∼600 nm films, with the upper range representing one of the highest values for such film thicknesses at room temperature, especially at deposition temperatures below 100 °C. Defect densities are also estimated from the thermal conductivity measurements, providing insight into the thermal engineering of AlN that can be optimized for application-specific heat spreading or thermal confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA