Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36227945

RESUMO

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Assuntos
Prótons , Protetores Solares , Catecóis , Humanos , Melaninas , Solventes
2.
J Neurophysiol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081214

RESUMO

During visuomotor learning, improvements in motor performance accompany changes in how people use vision. However, the dependencies between altered visual reliance and improvements in motor skill is unclear. The present studies used an online sequence learning task to quantify how changing the availability of visual information affected motor skill learning (Study One) and how changing motor skill affected visual reliance (Study Two). Participants used their keyboard to respond to targets falling vertically down a game screen. In Study One (n=49), the availability of visual information was altered by manipulating where the targets were visible on the screen. Three experimental groups practiced the task during full or limited vision conditions (when the targets were only visible in specific areas). We hypothesized that limiting visual information would reduce motor learning (i.e. the rate of improvement during training trial blocks). Instead, while participants performed worse during limited vision trials (p<0.001), there was no difference in learning rate (p=0.87). In Study Two (n=119), all participants practiced the task with full vision and their visual reliance (i.e., their performance change between full and limited vision conditions) was quantified before and after training. We hypothesized that with motor learning, visual reliance on future targets would increase, while visual reliance on the current targets would decrease. The results of Study Two partially support our hypotheses with visual reliance decreasing for all visual areas (p<0.001). Together, the results suggest changing motor skill alters how people use vision, but changing visual availability does not affect motor learning.

3.
Inorg Chem ; 63(11): 4947-4956, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38437618

RESUMO

A series of photosensitizers comprised of both an inorganic and an organic chromophore are investigated in a joint synthetic, spectroscopic, and theoretical study. This bichromophoric design strategy provides a means by which to significantly increase the excited state lifetime by isolating the excited state away from the metal center following intersystem crossing. A variable bridging group is incorporated between the donor and acceptor units of the organic chromophore, and its influence on the excited state properties is explored. The Franck-Condon (FC) photophysics and subsequent excited state relaxation pathways are investigated with a suite of steady-state and time-resolved spectroscopic techniques in combination with scalar-relativistic quantum chemical calculations. It is demonstrated that the presence of an electronically conducting bridge that facilitates donor-acceptor communication is vital to generate long-lived (32 to 45 µs), charge-separated states with organic character. In contrast, when an insulating 1,2,3-triazole bridge is used, the excited state properties are dominated by the inorganic chromophore, with a notably shorter lifetime of 60 ns. This method of extending the lifetime of a molecular photosensitizer is, therefore, of interest for a range of molecular electronic devices and photophysical applications.

4.
J Am Chem Soc ; 145(1): 732-744, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538761

RESUMO

Control over the populations of singlet and triplet excitons is key to organic semiconductor technologies. In different contexts, triplets can represent an energy loss pathway that must be managed (i.e., solar cells, light-emitting diodes, and lasers) or provide avenues to improve energy conversion (i.e., photon upconversion and multiplication systems). A key consideration in the interplay of singlet and triplet exciton populations in these systems is the rate of intersystem crossing (ISC). In this work, we design, measure, and model a series of new electron acceptor molecules and analyze them using a combination of ultrafast transient absorption and ultrafast broadband photoluminescence spectroscopies. We demonstrate that intramolecular triplet formation occurs within several hundred picoseconds in solution and is accelerated considerably in the solid state. Importantly, ISC occurs with sufficient rapidity to compete with charge formation in modern organic solar cells, implicating triplets in intrinsic exciton loss channels in addition to charge recombination. Density functional theory calculations reveal that ISC occurs in triplet excited states characterized by local deviations from orbital π-symmetry associated with rotationally flexible thiophene rings. In disordered films, structural distortions, therefore, result in significant increases in spin-orbit coupling, enabling rapid ISC. We demonstrate the generality of this proposal in an oligothiophene model system where ISC is symmetry-forbidden and show that conformational disorder introduced by the formation of a solvent glass accelerates ISC, outweighing the lower temperature and increased viscosity. This proposal sheds light on the factors responsible for facile ISC and provides a simple framework for molecular control over spin states.

5.
J Neurophysiol ; 129(2): 298-306, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542421

RESUMO

During human walking the whole body center-of-mass (COM) trajectory may be a control objective, a goal the central nervous system uses to plan and regulate movement. Our previous observation, that after practice walking in a novel laterally directed force field people adapt a COM trajectory similar to their normal trajectory, supports this idea. However, our prior work only presented data demonstrating changes in COM trajectory in response to a single force field. To evaluate whether this phenomena is robust, in the present study we present new data demonstrating that people adapt their COM trajectory in a similar manner when the direction of the external force field is changed resulting in drastically different lower limb joint dynamics. Specifically, we applied a continuous, left-directed force field (in the previous experiment the force field was applied to the right) to the COM as participants performed repeated trials of a discrete walking task. We again hypothesized that with practice walking in the force field people would adapt a COM trajectory that was similar to their baseline performance and exhibit aftereffects, deviation of their COM trajectory in the opposite direction of force field, when the field was unexpectedly removed. These hypotheses were supported and suggest that participants formed an internal model to control their COM trajectory. Collectively these findings demonstrate that people adapt their gait patterns to anticipate consistent aspects of the external environment. These findings suggest that this response is robust to force fields applied in multiple directions that may require substantially different neural control.NEW & NOTEWORTHY With experience people adapted a predictive internal model to control their whole body center-of-mass walking trajectory that anticipated the disruptive laterally directed forces of a novel and consistent external environment. Collectively these findings demonstrate that adaptation of gait to anticipate consistent aspects of the external environment is a response that is robust to force fields in multiple directions that require substantially different lower limb dynamics and neural control.


Assuntos
Marcha , Caminhada , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Movimento , Extremidade Inferior , Adaptação Fisiológica/fisiologia , Fenômenos Biomecânicos/fisiologia
6.
Inorg Chem ; 62(28): 11028-11036, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37389435

RESUMO

A hexa-peri-hexabenzocoronene (HBC)-substituted dipyridophenazine (dppz) ligand (dppz-HBC) and its corresponding rhenium [Re(CO)3Cl] and ruthenium [Ru(bpy)2]2+ complexes were synthesized and characterized. The interplay of their various excited states was investigated using spectroscopic and computational techniques. Perturbation of the HBC was seen through a broadening and decreased intensity of the HBC absorption bands that dominate the absorption spectra. A delocalized, partial charge transfer state was shown through emission (520 nm) in the ligand and rhenium complex and is supported by time-dependent density functional theory calculations. Transient absorption measurements revealed the presence of dark states with a triplet delocalized state populated in the ligand, while in the complexes, longer-lived (2.3-2.5 µs) triplet HBC states could be accessed. The properties of the studied ligand and complexes provide insight into the future design of polyaromatic systems and add to the rich history of dppz systems.

7.
Exp Brain Res ; 241(10): 2535-2546, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704876

RESUMO

People use vision to inform motor control strategies during walking. With practice performing a target stepping task, people shift their gaze farther ahead, transitioning from watching their feet contact the target to looking for future target locations. The shift in gaze focus suggests the role of vision in motor control changes from emphasizing feedback to feedforward control. The present study examines whether changing visual fixation location is accompanied by a similar change in reliance upon visual information. Twenty healthy young adults practiced stepping on moving targets projected on the surface of a treadmill. Periodically, participants' visual reliance was probed by hiding stepping targets which inform feedback or feedforward (targets < or > 1.5 steps ahead, respectively) motor control strategies. We calculated visual reliance as the increase in step error when targets were hidden. We hypothesized that with practice, participant reliance on feedback visual information would decrease and their reliance on feedforward visual information would increase. Contrary to our hypothesis, participants became significantly more reliant on feedback visual information with practice (p < 0.001) but their reliance on feedforward visual information did not change (p = 0.49). Participants' reliance on visual information increased despite looking significantly farther ahead with practice (p < 0.016). Together, these results suggest that participants fixated on feedback information less. However, changes in fixation pattern did not reduce their reliance upon feedback information as stepping performance still significantly decreased when feedback information was removed after training. These findings provide important context for how the role of vision in controlling walking changes with practice.


Assuntos
Fixação Ocular , Aprendizagem , Adulto Jovem , Humanos , , Caminhada
8.
J Phys Chem A ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310731

RESUMO

The vibrational and electronic properties of six systematically altered donor-acceptor dyes were investigated with density functional theory (DFT), spectroscopy, and electrochemical techniques. The dyes incorporated a carbazole donor connected to a dithieno[3,2-b:2',3'-d]thiophene linker at either the C2 (m) or C3 (p) position. Indane-based acceptors contained either dimalononitrile (IndCN), ketone and malononitrile (InOCN) or diketone (IndO) electron accepting groups. Molecular geometries modeled by DFT using the BLYP functional and def2-TZVP basis set showed planar geometries containing large, extended π-systems and produced Raman spectra consistent with the experimental data. Electronic absorption spectra had transitions with π-π* character at wavelengths below 325 nm and a charge transfer (CT) transition region from 500 to 700 nm. The peak wavelength was dependent on the donor and acceptor architecture, with each modulating the HOMO and LUMO levels, respectively, supported by TD-DFT estimates using the LC-ωPBE* functional and 6-31g(d) basis set. The compounds showed emission in solution with quantum yields ranging from 0.004 to 0.6 and lifetimes of less than 2 ns. These were assigned to either π-π* or CT emissive states. Signals attributed to CT states exhibited positive solvatochromism and thermochromism. The spectral emission behavior of each compound trended with the acceptor unit moieties, where malononitrile units lead to greater π-π* character and ketones exhibited greater CT character.

9.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175105

RESUMO

Raman and infrared spectroscopy, used as individual and low-level fused datasets, were evaluated to identify and quantify the presence of adulterants (palm oil, PO; ω-3 concentrates in ethyl ester, O3C and fish oil, FO) in krill oil. These datasets were qualitatively analysed with principal component analysis (PCA) and classified as adulterated or unadulterated using support vector machines (SVM). Using partial least squares regression (PLSR), it was possible to identify and quantify the adulterant present in the KO mixture. Raman spectroscopy performed better (r2 = 0.98; RMSEP = 2.3%) than IR spectroscopy (r2 = 0.91; RMSEP = 4.2%) for quantification of O3C in KO. A data fusion approach further improved the analysis with model performance for quantification of PO (r2 = 0.98; RMSEP = 2.7%) and FO (r2 = 0.76; RMSEP = 9.1%). This study demonstrates the potential use of Raman and IR spectroscopy to quantify adulterants present in KO.


Assuntos
Euphausiacea , Animais , Espectrofotometria Infravermelho , Análise Espectral Raman , Análise dos Mínimos Quadrados , Contaminação de Alimentos/análise
10.
J Neurophysiol ; 128(3): 445-454, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35822745

RESUMO

Vision plays a vital role in locomotor learning, providing feedback information to correct movement errors, and feedforward information to inform learned movement plans. Gaze behavior, or the distribution of fixation locations, can quantify how visual information is used during the motor learning process. How gaze behavior adapts during motor learning and in response to changing motor performance is poorly understood. This study examines if and how an individual's gaze behavior adapts during a sequence learning, target stepping task. We monitored the gaze behavior of 12 healthy young adults while they walked on a treadmill and attempted to precisely step on moving targets that were separated by variable distances (80%, 100%, and 120% of preferred step length). Participants completed a total of 11 trial blocks of 102 steps each. We hypothesized that both mean fixation distance would increase (participants would look farther ahead), and step error would decrease with experience. Following practice, participants significantly increased their fixation distance (P < 0.001) by 0.27 ± 0.18 steps and decreased their step error (P < 0.001) by 4.0 ± 1.7 cm, supporting our hypothesis. Our results suggest that early in the learning process, participants gaze behavior emphasized gathering visual information necessary for feedback motor control. As motor performance improved with experience, participants shifted their gaze fixation farther ahead placing greater emphasis on the visual information used for feedforward motor control. These findings provide important information about how gaze behavior changes in parallel with improvements in walking performance.NEW & NOTEWORTHY People consistently vary how they use visual information to inform walking. However, what drives this variation and how sampled visual information changes with locomotor learning is not well understood. Here, we find that gaze fixation locations moved farther ahead while step error decreases as participants practice a target stepping task. The results suggest that participants increasingly used a feedforward locomotor control strategy with practice.


Assuntos
Fixação Ocular , Desempenho Psicomotor , Humanos , Aprendizagem , Desempenho Psicomotor/fisiologia , Visão Ocular , Caminhada/fisiologia , Adulto Jovem
11.
Anal Chem ; 94(23): 8241-8248, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647784

RESUMO

In an earlier investigation, low-frequency Raman (LFR) spectroscopy was shown to detect the transition temperature of the ß-relaxation (Tß) in both amorphous celecoxib and various celecoxib amorphous solid dispersions [Be̅rzins, K. Mol. Pharmaceutics 2021, 18(10), 3882-3893]. In this study, we further investigated the application of this technique to determine Tß, an important parameter for estimating crystallization potency of amorphous drugs. Alongside commercially available amorphous drugs (zafirlukast and valsartan disodium salt), differently melt-quenched samples of cimetidine were also analyzed. Overall, the variable-temperature LFR measurements allowed for an easy access to the desired information, including the even lesser transition of the tertiary relaxation motions (Tγ). Thus, the obtained results not only highlighted the sensitivity, but also the practical usefulness of this technique to elucidate (subtle) changes in molecular dynamics within amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Análise Espectral Raman , Varredura Diferencial de Calorimetria , Cimetidina/química , Indóis/química , Preparações Farmacêuticas , Fenilcarbamatos/química , Sensibilidade e Especificidade , Sulfonamidas/química , Temperatura , Temperatura de Transição , Valsartana/química
12.
Mol Pharm ; 19(7): 2316-2326, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35503753

RESUMO

Slurry studies are useful for exhaustive polymorph and solid-state stability screening of drug compounds. Raman spectroscopy is convenient for monitoring crystallization in such slurries, as the measurements can be performed in situ even in aqueous environments. While the mid-frequency region (400-4000 cm-1) is dominated by intramolecular vibrations and has traditionally been used for such studies, the low-frequency spectral region (<200 cm-1) probes solid-state related lattice vibrations and is potentially more valuable for understanding subtle and/or complex crystallization behavior. The aim of the study was to investigate low-frequency Raman spectroscopy for in situ monitoring of crystallization of an amorphous pharmaceutical in slurries for the first time and directly compare the results with those simultaneously obtained with mid-frequency Raman spectroscopy. Amorphous indomethacin (IND) slurries were prepared at pH 1.2 and continuously monitored in situ at 5 and 25 °C with both low- and mid-frequency Raman spectroscopy. At 25 °C, both spectral regions profiled amorphous IND in slurries as converting directly from the amorphous form toward the α crystalline form. In contrast, at 5 °C, principal component analysis revealed a divergence in the detected conversion profiles: the mid-frequency Raman suggested a direct conversion to the α crystalline form, but the low-frequency region showed additional transition points. These were attributed to the appearance of minor amounts of the ε-form. The additional solid-state sensitivity of the low-frequency region was attributed to the better signal-to-noise ratio and more consistent spectra in this region. Finally, the low-frequency Raman spectrum of the ε-form of IND is reported for the first time.


Assuntos
Indometacina , Análise Espectral Raman , Cristalização , Indometacina/química , Análise de Componente Principal , Análise Espectral Raman/métodos , Água
13.
Mol Pharm ; 19(11): 4311-4319, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36170046

RESUMO

This work explores the potential use of spatially offset low-frequency anti-Stokes Raman spectroscopy (SOLFARS) to detect subsurface composition below an emissive surface. A range of bilayer tablets were used to evaluate this approach. Bilayer tablets differed in both the underlying layer composition (active pharmaceutical ingredient to excipient ratio, celecoxib: α-lactose monohydrate) and the upper layer thickness of the fluorescent coating (polyvinylpyrrolidone mixture with sunset yellow FCF dye). Two low- (<300 cm-1) plus mid- (300 to 1800 cm-1) frequency Raman instrumental setups, with lateral displacements for spatial analysis of solid dosage forms, using different excitation wavelengths were explored. The 532 nm system was used to illustrate how the low-frequency anti-Stokes Raman approach works with samples exhibiting extreme fluorescence/background emission interference, and the 785 nm system was used to demonstrate the performance when less extreme fluorescence/emission is present. Qualitative and quantitative chemometric analyses were performed to evaluate the performance of individual spectral domains and their combinations for the determination of the composition of the subsurface layer as well as the coating layer thickness. Overall, the commonly used midfrequency region (300-1800 cm-1) proved superior when using 785 nm incident laser for quantifying the coating thickness (amorphous materials), whereas a combined Stokes and anti-Stokes low-frequency region was found to be superior for quantifying underlying crystalline materials. When exploring individual spectral regions for subsurface composition using spatially offset measurements, the anti-Stokes LFR spectral window performed best. The anti-Stokes low-frequency range also demonstrated an advantage for models composed of data exhibiting high levels of fluorescence (e.g., data collected using 532 nm incident laser), as the Stokes scattering was masked by fluorescence. Transmission measurements were also explored for comparison and showed the best applicability for both upper and lower layer analysis, attributed to the inherently larger bulk sampling volume of this setup. From a practical perspective, these results highlight the potential adjustments that can be made to already existing (in-line) Raman setups to facilitate similar analysis in pharmaceutical industry-based settings.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Comprimidos , Luz
14.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35142362

RESUMO

Healthy young adults have a most preferred walking speed, step length and step width that are close to energetically optimal. However, people can choose to walk with a multitude of different step lengths and widths, which can vary in both energy expenditure and preference. Here, we further investigated step length-width preferences and their relationship to energy expenditure. In line with a growing body of research, we hypothesized that people's preferred stepping patterns would not be fully explained by metabolic energy expenditure. To test this hypothesis, we used a two-alternative forced-choice paradigm. Fifteen participants walked on an oversized treadmill. Each trial, participants performed two prescribed stepping patterns and then chose the pattern they preferred. Over time, we adapted the choices such that there was 50% chance of choosing one pattern over another (equally preferred). If people's preferences are based solely on metabolic energy expenditure, then these equally preferred stepping patterns should have equal energy expenditure. In contrast, we found that energy expenditure differed across equally preferred step length-width patterns (P<0.001). On average, longer steps with higher energy expenditure were preferred over shorter and wider steps with lower energy expenditure (P<0.001). We also asked participants to rank a set of shorter, wider and longer steps from most preferred to least preferred, and from most energy expended to least energy expended. Only 7/15 participants had the same rankings for their preferences and perceived energy expenditure. Our results suggest that energy expenditure is not the only factor influencing a person's conscious gait choices.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Metabolismo Energético , Teste de Esforço , Humanos , Adulto Jovem
15.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36124619

RESUMO

Foot placement can be selected to anticipate upcoming perturbations, but it is unclear how this anticipatory strategy is influenced by available response time or precise knowledge of the perturbation's characteristics. This study investigates anticipatory and reactive locomotor strategies for repeated underfoot perturbations with varying levels of temporal certainty, physical certainty, and available response time. Thirteen healthy adults walked with random underfoot perturbations from a mechanized shoe. Temporal certainty was challenged by presenting the perturbations with or without warning. Available response time was challenged by adjusting the timing of the warning before the perturbation. Physical certainty was challenged by making perturbation direction (inversion or eversion) unpredictable for certain conditions. Linear-mixed effects models assessed the effect of each condition on the percentage change of margin of stability and step width. For perturbations with one stride or less of response time, we observed few changes to step width or margin of stability. As response time increased to two strides, participants adopted wider steps in anticipation of the perturbation (P=0.001). Physical certainty had little effect on gait for the step of the perturbation, but participants recovered normal gait sooner when the physical nature of the perturbation was predictable (P<0.001). Despite having information about the timing and direction of upcoming perturbations, individuals do not develop perturbation-specific feedforward strategies. Instead, they use feedback control to recover normal gait after a perturbation. However, physical certainty appears to make the feedback controller more efficient and allows individuals to recover normal gait sooner.


Assuntos
Marcha , Equilíbrio Postural , Adulto , Fenômenos Biomecânicos , Pé/fisiologia , Marcha/fisiologia , Humanos , Locomoção , Equilíbrio Postural/fisiologia , Caminhada/fisiologia
16.
J Phys Chem A ; 126(34): 5681-5691, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998577

RESUMO

The geometric and spectroscopic properties of four cationic N-aryl-2,4,6-triphenylpyridinium-based donor-acceptor dyes─1-[4-(9H-carbazol-9-yl)phenyl]-2,4,6-triphenylpyridinium, 1-[4-(N,N-diphenylamino)phenyl]-2,4,6-triphenylpyridinium, 1-(9-phenyl-9H-carbazol-3-yl)-2,4,6-triphenylpyridinium, and 1-(9-ethyl-9H-carbazol-3-yl)-2,4,6-triphenylpyridinium─are reported. The four dyes exhibited a twisted, quasi-perpendicular geometry about the central donor-acceptor bond, shown by X-ray crystallography and supported by Raman spectroscopy and DFT calculations. The electronic absorption spectra show weak charge transfer (CT) transitions at about 400 nm (ε ∼ 3000 L mol-1 cm-1). Time dependent (TD) DFT supported the nature of the CT transition, displaying an 89-97% shift in electron density from the donor to the acceptor upon electronic excitation. Excited state geometry calculations revealed significant geometry changes upon electronic excitation. Enhancement of vibrational modes attributable to this transition was also recognized in the resonance Raman spectra. Emission spectroscopies showed two distinct emission bands. The lower energy band, resulting from radiative decay of the CT excited state, exhibited large anomalous Stokes shifts of ∼9000 cm-1. Much of the Stokes shift was a consequence of geometry changes between the ground and excited states. This was confirmed by variable temperature emission studies, with Stokes shifts reducing by up to 3000 cm-1 upon cooling from 293 to 80 K. Additionally, a high energy aggregation induced emission band was present for two of the dyes, resulting from the inhibition of excited state geometry reorganization and supported by solid-state emission spectra. These phenomena exemplify the importance of geometry in short range donor-acceptor dyes such as these.

17.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889406

RESUMO

This study uses Raman and IR spectroscopic methods for the detection of adulterants in marine oils. These techniques are used individually and as low-level fused spectroscopic data sets. We used cod liver oil (CLO) and salmon oil (SO) as the valuable marine oils mixed with common adulterants, such as palm oil (PO), omega-3 concentrates in ethyl ester form (O3C), and generic fish oil (FO). We showed that support vector machines (SVM) can classify the adulterant present in both CLO and SO samples. Furthermore, partial least squares regression (PLSR) may be used to quantify the adulterants present. For example, PO and O3C adulterated samples could be detected with a RMSEP value less than 4%. However, the FO adulterant was more difficult to quantify because of its compositional similarity to CLO and SO. In general, data fusion improved the RMSEP for PO and O3C detection. This shows that Raman and IR spectroscopy can be used in concert to provide a useful analytical test for common adulterants in CLO and SO.


Assuntos
Contaminação de Alimentos , Óleos de Plantas , Contaminação de Alimentos/análise , Análise dos Mínimos Quadrados , Óleos de Plantas/química , Análise Espectral , Máquina de Vetores de Suporte
18.
J Am Chem Soc ; 143(24): 9082-9093, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34111929

RESUMO

The optical properties of two Re(CO)3(bpy)Cl complexes in which the bpy is substituted with two donor (triphenylamine, TPA, ReTPA2) as well as both donor (TPA) and acceptor (benzothiadiazole, BTD, ReTPA-BTD) groups are presented. For ReTPA2 the absorption spectra show intense intraligand charge-transfer (ILCT) bands at 460 nm with small solvatochromic behavior; for ReTPA-BTD the ILCT transitions are weaker. These transitions are assigned as TPA → bpy transitions as supported by resonance Raman data and TDDFT calculations. The excited-state spectroscopy shows the presence of two emissive states for both complexes. The intensity of these emission signals is modulated by solvent. Time-resolved infrared spectroscopy definitively assigns the excited states present in CH2Cl2 to be MLCT in nature, and in MeCN the excited states are ILCT in nature. DFT calculations indicated this switching with solvent is governed by access to states controlled by spin-orbit coupling, which is sufficiently different in the two solvents, allowing to select out each of the charge-transfer states.

19.
Anal Chem ; 93(25): 8986-8993, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34142802

RESUMO

A new combinatory Raman subtechnique of low-frequency and micro-spatially offset Raman spectroscopy (denoted micro-SOLFRS) is demonstrated via analysis of pharmaceutical solid dosage forms. A variety of different (multilayer/multicomponent) model systems comprising celecoxib, α-lactose (the anhydrous and monohydrate form), and polyvinylpyrrolidone (PVP) were probed to test the potency of this newly developed technique to, for example, provide qualitative and quantitative information on surface and subsurface layer characteristics, including their thicknesses as well as enable monitoring of surface-driven solid-state form transformations. A simultaneous collection of low- and, the more commonly used, mid-frequency data enabled a direct comparison between these spectral regions, where the low-frequency domain (hence, micro-SOLFRS) proved superior for every respective analysis carried out herein.


Assuntos
Preparações Farmacêuticas , Análise Espectral Raman , Diagnóstico por Imagem , Formas de Dosagem , Lactose , Povidona
20.
Anal Chem ; 93(8): 3698-3705, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33590756

RESUMO

A new Raman subtechnique, spatially offset low-frequency Raman spectroscopy (SOLFRS), is demonstrated via an analysis of pharmaceutical solid dosage forms. Several different model systems comprised of celecoxib (a popular anti-inflammatory drug), α-lactose anhydrous stable form, α-lactose monohydrate, and polyvinylpyrrolidone (PVP) were used to represent tangible scenarios for the application of SOLFRS. Additionally, the challenges and limitations were highlighted in relation to its real-time use, and potential solutions to address them were also provided. Lastly, the future directions for this new variation of Raman spectroscopic technique were briefly discussed, including its potential for broader application in pharmaceutical analysis and other research fields.


Assuntos
Preparações Farmacêuticas , Análise Espectral Raman , Formas de Dosagem , Lactose , Povidona , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA