Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 26(Pt 2): 439-444, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855253

RESUMO

Crystal collimation offers a viable alternative to the commonly used pinhole collimation in small-angle X-ray scattering (SAXS) for specific applications requiring highest angular resolution. This scheme is not affected by the parasitic scattering and diffraction-limited beam broadening. The Darwin width of the rocking curve of the crystals mainly defines the ultimate beam divergence. For this purpose, a dispersive Si-111 crystal collimation set-up based on two well conditioned pseudo channel-cut crystals (pairs of well polished, independent parallel crystals) using a higher-order reflection (Si-333) has been developed. The gain in resolution is obtained at the expense of flux. The system has been installed at the TRUSAXS beamline ID02 (ESRF) for reducing the horizontal beam divergence in high-resolution mesurements. The precise mechanics of the system allows reproducible alignment of the Bragg condition. The high resolution achieved at a sample-detector distance of 31 m is demonstrated by ultra-small-angle X-ray scattering measurements on a model system consisting of micrometre-sized polystyrene latex particles with low polydispersity.

2.
J Appl Crystallogr ; 55(Pt 1): 98-111, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35145357

RESUMO

The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q) range covered is the same as before, 0.001 ≤ q ≤ 50 nm-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems.

3.
J Appl Crystallogr ; 51(Pt 6): 1511-1524, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30546286

RESUMO

This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. The main component of the instrument is an evacuated detector tube of length 34 m and diameter 2 m. Several different detectors are housed inside a motorized wagon that travels along a rail system, allowing an automated change of the sample-detector distance from about 1 to 31 m as well as selection of the desired detector. For optional combined wide-angle scattering measurements, a wide-angle detector is installed at the entrance cone of the tube. A scattering vector (of magnitude q) range of 0.002 ≤ q ≤ 50 nm-1 is covered with two sample-detector distances and a single-beam setting for an X-ray wavelength of 1 Å. In the high-resolution mode, two-dimensional ultra-small-angle X-ray scattering patterns down to q < 0.001 nm-1 can be recorded, and the resulting one-dimensional profiles have superior quality as compared to those measured with an optimized Bonse-Hart instrument. In the highest-resolution mode, the beam is nearly coherent, thereby permitting multispeckle ultra-small-angle X-ray photon correlation spectroscopy measurements. The main applications of the instrument include the elucidation of static and transient hierarchical structures, and nonequilibrium dynamics in soft matter and biophysical systems.

4.
Rev Sci Instrum ; 87(12): 125116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040915

RESUMO

We present a new experimental setup for time-resolved solution small-angle X-ray scattering (SAXS) studies of kinetic processes induced by sub-ms hydrostatic pressure jumps. It is based on a high-force piezo-stack actuator, with which the volume of the sample can be dynamically compressed. The presented setup has been designed and optimized for SAXS experiments with absolute pressures of up to 1000 bars, using transparent diamond windows and an easy-to-change sample capillary. The pressure in the cell can be changed in less than 1 ms, which is about an order of magnitude faster jump than previously obtained by dynamic pressure setups for SAXS. An additional temperature control offers the possibility for automated mapping of p-T phase diagrams. Here we present the technical specifications and first experimental data taken together with a preview of new research opportunities enabled by this setup.

5.
J Synchrotron Radiat ; 15(Pt 4): 341-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18552425

RESUMO

An improved crystal design for a Bonse-Hart ultra-small-angle scattering instrument is presented. Defects at the diffracting surfaces of the conditioning crystals were found to be at the origin of diffuse scattering that enhances the intensity in the wings of the rocking curves by several orders of magnitude. In order to improve the performance of the instrument, the monolithic channel-cut crystals were replaced by pairs of separate polished and deeply etched crystals. These crystals were mounted on a mechanical stage that allows very precise parallel alignment of the crystals to within a tiny fraction of the rocking curve width (sub-microrad range). By using these double-crystal set-ups, the parasitic background scattering was reduced by more than an order of magnitude. The steps to achieve the optimum surface quality of the crystals as well as the precision mechanical design for their parallel alignment are described. Significant improvement of the signal-to-background ratio and the available wavevector range of the instrument make it suitable for studying the microstructure and dynamics of dilute and weakly scattering soft-matter systems. This development also has potential applications in X-ray optics such as low-background and tunable monochromators and collimators.


Assuntos
Espalhamento a Baixo Ângulo , Síncrotrons/instrumentação , Animais , Caseínas/química , Bovinos , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA