Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
PLoS Pathog ; 9(4): e1003312, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637602

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar(-/-) ) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


Assuntos
Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Receptor de Interferon alfa e beta/genética , Proteínas Estruturais Virais/imunologia , Células 3T3 , Aedes , Infecções por Alphavirus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Febre de Chikungunya , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Vero , Proteínas do Envelope Viral/imunologia
3.
Plant Biotechnol J ; 12(8): 1098-107, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24975464

RESUMO

Previously, our group engineered a plant-derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single-chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv-CH). pE16 and pE16scFv-CH were expressed and assembled efficiently in Nicotiana benthamiana ∆XF plants, a glycosylation mutant lacking plant-specific N-glycan residues. Glycan analysis revealed that ∆XF plant-derived pE16scFv-CH (∆XFpE16scFv-CH) and pE16 (∆XFpE16) both displayed a mammalian glycosylation profile. ∆XFpE16 and ∆XFpE16scFv-CH demonstrated equivalent antigen-binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared with the parent mammalian cell-produced E16 (mE16). A single dose of ∆XFpE16 or ∆XFpE16scFv-CH protected mice against WNV-induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single-chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti-WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N-glycosylation. This platform may lead to a more robust and cost-effective production of antibody-based therapeutics against WNV infection and other infectious, inflammatory or neoplastic diseases.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Nicotiana/metabolismo , Anticorpos de Cadeia Única/imunologia , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Monoclonais/imunologia , Expressão Gênica , Glicosilação , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Planticorpos/imunologia , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/imunologia
4.
Blood ; 117(17): 4542-51, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21300981

RESUMO

We describe the application of a novel, bispecific antibody platform termed dual affinity retargeting (DART) to eradicate B-cell lymphoma through coengagement of the B cell-specific antigen CD19 and the TCR/CD3 complex on effector T cells. Comparison with a single-chain, bispecific antibody bearing identical CD19 and CD3 antibody Fv sequences revealed DART molecules to be more potent in directing B-cell lysis. The enhanced activity with the CD19xCD3 DART molecules was observed on all CD19-expressing target B cells evaluated using resting and prestimulated human PBMCs or purified effector T-cell populations. Characterization of a CD19xTCR bispecific DART molecule revealed equivalent potency with the CD19xCD3 DART molecule, demonstrating flexibility of the DART structure to support T-cell/B-cell associations for redirected T cell-killing applications. The enhanced level of killing mediated by DART molecules was not accompanied by any increase in nonspecific T-cell activation or lysis of CD19(-) cells. Cell-association studies indicated that the DART architecture is well suited for maintaining cell-to-cell contact, apparently contributing to the high level of target cell killing. Finally, the ability of the CD19xTCR DART to inhibit B-cell lymphoma in NOD/SCID mice when coadministered with human PBMCs supports further evaluation of DART molecules for the treatment of B-cell malignancies.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Linfócitos B/imunologia , Linfoma de Células B , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Linfócitos B/citologia , Complexo CD3/imunologia , Complexo CD3/metabolismo , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfocinas/imunologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Sialoglicoproteínas/imunologia , Linfócitos T/citologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Proc Natl Acad Sci U S A ; 107(6): 2419-24, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133644

RESUMO

Over the past decade, West Nile virus (WNV) has spread to all 48 of the lower United States as well as to parts of Canada, Mexico, the Caribbean, and South America, with outbreaks of neuroinvasive disease occurring annually. At present, no therapeutic or vaccine is available for human use. Epidemics of WNV and other emerging infectious disease threats demand cost-efficient and scalable production technologies that can rapidly transfer effective therapeutics into the clinical setting. We have previously reported that Hu-E16, a humanized anti-WNV mAb, binds to a highly conserved epitope on the envelope protein, blocks viral fusion, and shows promising postexposure therapeutic activity. Herein, we generated a plant-derived Hu-E16 mAb that can be rapidly scaled up for commercial production. Plant Hu-E16 was expressed at high levels within 8 days of infiltration in Nicotiana benthamiana plants and retained high-affinity binding and potent neutralizing activity in vitro against WNV. A single dose of plant Hu-E16 protected mice against WNV-induced mortality even 4 days after infection at rates that were indistinguishable from mammalian-cell-produced Hu-E16. This study demonstrates the efficacy of a plant-produced mAb against a potentially lethal infection several days after exposure in an animal challenge model and provides a proof of principle for the development of plant-derived mAbs as therapy against emerging infectious diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Western Blotting , Imunoterapia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Resultado do Tratamento , Febre do Nilo Ocidental/terapia , Febre do Nilo Ocidental/virologia
6.
Nat Med ; 11(5): 522-30, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15852016

RESUMO

Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Imunoterapia , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/terapia , Vírus do Nilo Ocidental/imunologia , Animais , Clonagem Molecular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Testes de Neutralização , Plasmídeos/genética , Proteínas do Envelope Viral/metabolismo , Febre do Nilo Ocidental/imunologia , Leveduras
7.
Mol Cancer Ther ; 21(7): 1047-1059, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511740

RESUMO

ADAM metallopeptidase domain 9 (ADAM9) is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an IHC screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody-drug conjugate (ADC) development. Here, we describe the preclinical evaluation of IMGC936, a novel ADC targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. In addition, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).


Assuntos
Imunoconjugados , Proteínas ADAM , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Imunoconjugados/química , Proteínas de Membrana/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Breast Cancer Res ; 13(6): R123, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22129105

RESUMO

INTRODUCTION: Response to trastuzumab in metastatic breast cancer correlates with expression of the high binding variant (158V) of the activating Fcγ receptor IIIA (CD16A). We engineered MGAH22, a chimeric anti-HER2 monoclonal antibody with specificity and affinity similar to trastuzumab, with an Fc domain engineered for increased binding to both alleles of human CD16A. METHODS: MGAH22 was compared to an identical anti-HER2 mAb except for a wild type Fc domain. Antibody-dependent cell cytotoxicity (ADCC) assays were performed with HER2-expressing cancer cells as targets and human PBMC or purified NK cells as effectors. Xenograft studies were conducted in mice with wild type murine FcγRs; in mice lacking murine CD16; or in mice lacking murine CD16 but transgenic for human CD16A-158F, the low-binding variant. The latter model reproduces the differential binding between wild type and the Fc-optimized mAb for human CD16A. The JIMT-1 human breast tumor line, derived from a patient that progressed on trastuzumab therapy, was used in these studies. Single and repeat dose toxicology studies with MGAH22 administered intravenously at high dose were conducted in cynomolgus monkeys. RESULTS: The optimized Fc domain confers enhanced ADCC against all HER2-positive tumor cells tested, including cells resistant to trastuzumab's anti-proliferative activity or expressing low HER2 levels. The greatest improvement occurs with effector cells isolated from donors homozygous or heterozygous for CD16A-158F, the low-binding allele. MGAH22 demonstrates increased activity against HER2-expressing tumors in mice transgenic for human CD16A-158F. In single and repeat-dose toxicology studies in cynomolgus monkeys, a species with a HER2 expression pattern comparable to that in humans and Fcγ receptors that exhibit enhanced binding to the optimized Fc domain, MGAH22 was well tolerated at all doses tested (15-150 mg/kg) and exhibited pharmacokinetic parameters similar to that of other anti-HER2 antibodies. Induction of cytokine release by MGAH22 in vivo or in vitro was similar to that induced by the corresponding wild type mAb or trastuzumab. CONCLUSIONS: The data support the clinical development of MGAH22, which may have utility in patients with low HER2 expressing tumors or carrying the CD16A low-binding allele.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptores de IgG/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neoplasias/metabolismo , Ligação Proteica , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Trastuzumab
9.
Arthritis Rheum ; 62(7): 1933-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20506263

RESUMO

OBJECTIVE: To exploit the physiologic Fcgamma receptor IIb (CD32B) inhibitory coupling mechanism to control B cell activation by constructing a novel bispecific diabody scaffold, termed a dual-affinity retargeting (DART) molecule, for therapeutic applications. METHODS: DART molecules were constructed by pairing an Fv region from a monoclonal antibody (mAb) directed against CD32B with an Fv region from a mAb directed against CD79B, the beta-chain of the invariant signal-transducing dimer of the B cell receptor complex. DART molecules were characterized physicochemically and for their ability to simultaneously bind the target receptors in vitro and in intact cells. The ability of the DART molecules to negatively control B cell activation was determined by calcium mobilization, by tyrosine phosphorylation of signaling molecules, and by proliferation and Ig secretion assays. A DART molecule specific for the mouse ortholog of CD32B and CD79B was also constructed and tested for its ability to inhibit B cell proliferation in vitro and to control disease severity in a collagen-induced arthritis (CIA) model. RESULTS: DART molecules were able to specifically bind and coligate their target molecules on the surface of B cells and demonstrated a preferential simultaneous binding to both receptors on the same cell. DART molecules triggered the CD32B-mediated inhibitory signaling pathway in activated B cells, which translated into inhibition of B cell proliferation and Ig secretion. A DART molecule directed against the mouse orthologs was effective in inhibiting the development of CIA in DBA/1 mice. CONCLUSION: This innovative bispecific antibody scaffold that simultaneously engages activating and inhibitory receptors enables novel therapeutic approaches for the treatment of rheumatoid arthritis and potentially other autoimmune and inflammatory diseases in humans.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Linfócitos B/efeitos dos fármacos , Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Receptores de IgG , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Antígenos CD79/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dimerização , Feminino , Humanos , Imunoglobulinas/metabolismo , Imunossupressores/imunologia , Imunossupressores/farmacocinética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores de IgG/imunologia , Transdução de Sinais , Baço/citologia , Alicerces Teciduais
10.
Curr Protoc Immunol ; 129(1): e95, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294319

RESUMO

Multispecific antibodies bind two or more different antigens and enable new therapeutic applications that cannot be replicated with conventional monoclonal antibodies, such as bridging different cells or bringing soluble proteins in close proximity. The DART and TRIDENT platforms enable the engineering of such antibodies. A DART molecule combines two independent antigen-binding sites in a stabilized, diabody-like structure. A DART molecule can be expressed with or without an Fc domain and thus can be tailored to have a long or short half-life in vivo and to induce or ablate effector function. Linking two DART units or a DART unit and a Fab domain (the latter structure is called TRIDENT format) via an Fc domain creates a monospecific, bispecific, trispecific, or tetraspecific molecule with up to tetravalent targeting of antigens. This article focuses on the design of DART and TRIDENT molecules that target two or three different antigens. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Design and generation of expression plasmids encoding DART and TRIDENT molecules Basic Protocol 2: Expression of DART and TRIDENT molecules by transient transfection of CHO cells Basic Protocol 3: Purification of DART and TRIDENT molecules from CHO cell supernatants.


Assuntos
Anticorpos Monoclonais/metabolismo , Engenharia Genética/métodos , Animais , Anticorpos Monoclonais/genética , Especificidade de Anticorpos/genética , Células CHO , Técnicas de Cultura de Células , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/genética
11.
Mol Cancer Ther ; 19(11): 2235-2244, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32967924

RESUMO

B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/11/2235/F1.large.jpg.


Assuntos
Antígenos B7/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antígenos B7/genética , Antígenos B7/metabolismo , Efeito Espectador , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/isolamento & purificação , Imunoconjugados/química , Imunoconjugados/isolamento & purificação , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 67(18): 8882-90, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875730

RESUMO

Monoclonal antibodies (mAb) are widely used in the treatment of non-Hodgkin's lymphoma and autoimmune diseases. Although the mechanism of action in vivo is not always known, the therapeutic activity of several approved mAbs depends on the binding of the Fcgamma regions to low-affinity Fcgamma receptors (FcgammaR) expressed on effector cells. We did functional genetic screens to identify IgG1 Fc domains with improved binding to the low-affinity activating Fc receptor CD16A (FcgammaRIIIA) and reduced binding to the low-affinity inhibitory Fc receptor, CD32B (FcgammaRIIB). Identification of new amino acid residues important for FcgammaR binding guided the construction of an Fc domain that showed a dramatically enhanced CD16A binding and greater than a 100-fold improvement in antibody-dependent cell-mediated cytotoxicity. In a xenograft murine model of B-cell malignancy, the greatest enhancement of an Fc-optimized anti-human B-cell mAb was accounted for by improved binding to FcgammaRIV, a unique mouse activating FcgammaR that is expressed by monocytes and macrophages but not natural killer (NK) cells, consistent with experimental and clinical data suggesting that mononuclear phagocytes, effector cells expressing both activating and inhibitory FcgammaR, are critical mediators of B-cell depletion in vivo. By using mice transgenic for human CD16A, enhanced survival was observed due to expression of CD16A-158(phe) on monocytes and macrophages as well as on NK cells in these mice. The design of new generations of improved antibodies for immunotherapy should aim at Fc optimization to increase the engagement of activating FcgammaR present on the surface of tumor-infiltrating effector cell populations.


Assuntos
Anticorpos Monoclonais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptores de IgG/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Feminino , Células HT29 , Humanos , Imunoglobulina G/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Linfoma de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Moleculares , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia
13.
Mol Cancer Ther ; 17(8): 1761-1772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866746

RESUMO

We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART protein designed to redirect T cells to target gpA33 expressing colon cancer. The gpA33 target was selected on the basis of an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic colorectal cancer specimens, including putative cancer stem cell populations. MGD007 displays the anticipated-bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33-expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD-1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together, MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Mol Cancer Ther; 17(8); 1761-72. ©2018 AACR.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Imunoterapia/métodos , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Feminino , Haplorrinos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica
14.
Clin Cancer Res ; 23(6): 1506-1518, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27663593

RESUMO

Purpose: CD19, a B-cell lineage-specific marker, is highly represented in B-cell malignancies and an attractive target for therapeutic interventions. MGD011 is a CD19 x CD3 DART bispecific protein designed to redirect T lymphocytes to eliminate CD19-expressing cells. MGD011 has been engineered with a modified human Fc domain for improved pharmacokinetic (PK) properties and designed to cross-react with the corresponding antigens in cynomolgus monkeys. Here, we report on the preclinical activity, safety and PK properties of MGD011.Experimental Design: The activity of MGD011 was evaluated in several in vitro and in vivo models. PK, safety and pharmacodynamic activity was also assessed in dose-escalation and repeat-dose studies of MGD011 administered once weekly in cynomolgus monkeys.Results: MGD011 mediated killing of human B-cell lymphoma lines by human or cynomolgus monkey PBMCs as well as autologous B-cell depletion in PBMCs from both species. MGD011-mediated killing was accompanied by target-dependent T-cell activation and expansion, cytokine release and upregulation of perforin and granzyme B. MGD011 demonstrated antitumor activity against localized and disseminated lymphoma xenografts reconstituted with human PBMCs. In cynomolgus monkeys, MGD011 displayed a terminal half-life of 6.7 days; once weekly intravenous infusion of MGD011 at doses up to 100 µg/kg, the highest dose tested, was well tolerated and resulted in dose-dependent, durable decreases in circulating B cells accompanied by profound reductions of B lymphocytes in lymphoid organs.Conclusions: The preclinical activity, safety and PK profile support clinical investigation of MGD011 as a therapeutic candidate for the treatment of B-cell malignancies. Clin Cancer Res; 23(6); 1506-18. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Antígenos CD19/imunologia , Linfoma de Células B/tratamento farmacológico , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Antígenos CD19/uso terapêutico , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Macaca fascicularis , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Leuk Lymphoma ; 58(11): 2642-2648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28372509

RESUMO

In normal B-cells, B-cell antigen receptor (BCR) signaling can be negatively regulated by the low-affinity receptor FcγRIIb (CD32b). To better understand the role of FcγRIIb in chronic lymphocytic leukemia (CLL), we correlated its expression on 155 samples from newly-diagnosed Binet A patients with clinical characteristics and outcome. FcγRIIb expression was similar in normal B-cells and leukemic cells, this being heterogenous among patients and within CLL clones. FcγRIIb expression did not correlate with well known prognostic markers [disease stage, serum beta-2 microglobulin (B2M), IGHV mutational status, expression of ZAP-70 and CD38, and cytogenetics] except for a weak concordance with CD49d. Moreover, patients with low FcγRIIb expression (69/155, 44.5%) required therapy earlier than those with high FcγRIIb expression (86/155, 55.5%) (median 151.4 months vs. not reached; p=.071). These results encourage further investigation on the role of FcγRIIb in CLL biology and prognostic significance in larger series of patients.


Assuntos
Leucemia Linfocítica Crônica de Células B/metabolismo , Receptores de IgG/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Proteína-Tirosina Quinase ZAP-70/metabolismo
16.
Sci Transl Med ; 7(289): 289ra82, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019218

RESUMO

Current therapies for acute myeloid leukemia (AML) are largely ineffective, and AML patients may benefit from targeted immunotherapy approaches. MGD006 is a bispecific CD3xCD123 dual-affinity re-targeting (DART) molecule that binds T lymphocytes and cells expressing CD123, an antigen up-regulated in several hematological malignancies including AML. MGD006 mediates blast killing in AML samples, together with concomitant activation and expansion of residual T cells. MGD006 is designed to be rapidly cleared, and therefore requires continuous delivery. In a mouse model of continuous administration, MGD006 eliminated engrafted KG-1a cells (an AML-M0 line) in human PBMC (peripheral blood mononuclear cell)-reconstituted NSG/ß2m(-/-) mice at doses as low as 0.5 µg/kg per day for ~7 days. MGD006 binds to human and cynomolgus monkey antigens with similar affinities and redirects T cells from either species to kill CD123-expressing target cells. MGD006 was well tolerated in monkeys continuously infused with 0.1 µg/kg per day escalated weekly to up to 1 µg/kg per day during a 4-week period. Depletion of circulating CD123-positive cells was observed as early as 72 hours after treatment initiation and persisted throughout the infusion period. Cytokine release, observed after the first infusion, was reduced after subsequent administrations, even when the dose was escalated. T cells from animals with prolonged in vivo exposure exhibited unperturbed target cell lysis ex vivo, indicating no exhaustion. A transient decrease in red cell mass was observed, with no neutropenia or thrombocytopenia. These studies support clinical testing of MGD006 in hematological malignancies, including AML.


Assuntos
Complexo CD3/metabolismo , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia Mieloide Aguda/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD , Medula Óssea/patologia , Morte Celular , Proliferação de Células , Citocinas/metabolismo , Relação Dose-Resposta Imunológica , Feminino , Hematopoese , Humanos , Leucemia Mieloide Aguda/patologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Macaca fascicularis , Masculino , Camundongos , Ligação Proteica , Engenharia de Proteínas
17.
PLoS One ; 9(3): e93541, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24675995

RESUMO

Previously, our group engineered a plant-derived monoclonal antibody (MAb) (pHu-E16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed several pHu-E16 variants to improve its efficacy. These variants included a single-chain variable fragment (scFv) of pHu-E16 fused to the heavy chain (HC) constant domains (CH(1-3)) of human IgG (pHu-E16scFv-CH(1-3)) and a tetravalent molecule (Tetra pHu-E16) assembled from pHu-E16scFv-CH(1-3) with a second pHu-E16scFv fused to the light chain (LC) constant region. pHu-E16scFv-CH(1-3) and Tetra pHu-E16 were efficiently expressed and assembled in plants. To assess the impact of differences in N-linked glycosylation on pHu-E16 variant assembly and function, we expressed additional pHu-E16 variants with various combinations of HC and LC components. Our study revealed that proper pairing of HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal cells. Associated with their distinct N-glycoforms, pHu-E16, pHu-E16scFv-CH(1-3) and Tetra pHu-E16 exhibited differential binding to C1q and specific Fcγ receptors (FcγR). Notably, none of the plant-derived Hu-E16 variants showed antibody-dependent enhancement (ADE) activity in CD32A+ human cells, suggesting the potential of plant-produced antibodies to minimize the adverse effect of ADE. Importantly, all plant-derived MAb variants exhibited at least equivalent in vitro neutralization and in vivo protection in mice compared to mammalian cell-produced Hu-E16. This study demonstrates the capacity of plants to express and assemble a large, complex and functional IgG-like tetravalent mAb variant and also provides insight into the relationship between MAb N-glycosylation, FcγR and C1q binding, and ADE. These new insights may allow the development of safer and cost effective MAb-based therapeutics for flaviviruses, and possibly other pathogens.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Imunização Passiva , Nicotiana/genética , Anticorpos de Cadeia Única/biossíntese , Febre do Nilo Ocidental/prevenção & controle , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/isolamento & purificação , Complemento C1q/imunologia , Complemento C1q/metabolismo , Glicosilação , Imunoconjugados/química , Imunoconjugados/genética , Imunoglobulina G/química , Imunoglobulina G/genética , Camundongos , Camundongos Endogâmicos C57BL , Plantas Geneticamente Modificadas , Ligação Proteica , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/isolamento & purificação , Análise de Sobrevida , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/mortalidade , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/patogenicidade
18.
Clin Cancer Res ; 18(14): 3834-45, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22615450

RESUMO

PURPOSE: The goal of this research was to harness a monoclonal antibody (mAb) discovery platform to identify cell-surface antigens highly expressed on cancer and develop, through Fc optimization, potent mAb therapies toward these tumor-specific antigens. EXPERIMENTAL DESIGN: Fifty independent mAbs targeting the cell-surface immunoregulatory B7-H3 protein were obtained through independent intact cell-based immunizations using human tissue progenitor cells, cancer cell lines, or cell lines displaying cancer stem cell properties. Binding studies revealed this natively reactive B7-H3 mAb panel to bind a range of independent B7-H3 epitopes. Immunohistochemical analyses showed that a subset displayed strong reactivity to a broad range of human cancers while exhibiting limited binding to normal human tissues. A B7-H3 mAb displaying exquisite tumor/normal differential binding was selected for humanization and incorporation of an Fc domain modified to enhance effector-mediated antitumor function via increased affinity for the activating receptor CD16A and decreased binding to the inhibitory receptor CD32B. RESULTS: MGA271, the resulting engineered anti-B7-H3 mAb, mediates potent antibody-dependent cellular cytotoxicity against a broad range of tumor cell types. Furthermore, in human CD16A-bearing transgenic mice, MGA271 exhibited potent antitumor activity in B7-H3-expressing xenograft models of renal cell and bladder carcinoma. Toxicology studies carried out in cynomolgus monkeys revealed no significant test article-related safety findings. CONCLUSIONS: This data supports evaluation of MGA271 clinical utility in B7-H3-expressing cancer, while validating a combination of a nontarget biased approach of intact cell immunizations and immunohistochemistry to identify novel cancer antigens with Fc-based mAb engineering to enable potent antitumor activity.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antígenos de Superfície/imunologia , Antígenos B7/imunologia , Neoplasias , Animais , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
19.
J Mol Biol ; 399(3): 436-49, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20382161

RESUMO

Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcgammaRIII) on effector cells to an Fv specific for mouse or human CD32B (FcgammaRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitt's lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.


Assuntos
Anticorpos Biespecíficos/imunologia , Linfócitos B/patologia , Linfoma de Burkitt/terapia , Região Variável de Imunoglobulina/imunologia , Leucócitos Mononucleares/imunologia , Linfoma de Células B/patologia , Receptores de IgG/imunologia , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/farmacocinética , Linfócitos B/imunologia , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Proteínas Ligadas por GPI , Humanos , Linfoma de Células B/imunologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Estabilidade Proteica , Receptores de IgG/genética , Transplante Heterólogo
20.
Cell Host Microbe ; 6(4): 381-91, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19837377

RESUMO

Virus neutralization is governed by the number of antibodies that bind a virion during the cellular entry process. Cellular and serum factors that interact with antibodies have the potential to modulate neutralization potency. Although the addition of serum complement can increase the neutralizing activity of antiviral antibodies in vitro, the mechanism and significance of this augmented potency in vivo remain uncertain. Herein, we show that the complement component C1q increases the potency of antibodies against West Nile virus by modulating the stoichiometric requirements for neutralization. The addition of C1q does not result in virolysis but instead reduces the number of antibodies that must bind the virion to neutralize infectivity. For IgG subclasses that bind C1q avidly, this reduced stoichiometric threshold falls below the minimal number of antibodies required for antibody-dependent enhancement (ADE) of infection of cells expressing Fc-gamma receptors (CD32) and explains how C1q restricts the ADE of flavivirus infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Complemento C1q/imunologia , Vírus do Nilo Ocidental/imunologia , Animais , Linhagem Celular , Humanos , Imunoglobulina G/imunologia , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA