Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Clin Lab Sci ; : 1-30, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497103

RESUMO

Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.

2.
Hum Mol Genet ; 30(10): 880-892, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33729479

RESUMO

Adaptor protein 2 (AP2), a heterotetrameric complex comprising AP2α, AP2ß2, AP2µ2 and AP2σ2 subunits, is ubiquitously expressed and involved in endocytosis and trafficking of membrane proteins, such as the calcium-sensing receptor (CaSR), a G-protein coupled receptor that signals via Gα11. Mutations of CaSR, Gα11 and AP2σ2, encoded by AP2S1, cause familial hypocalciuric hypercalcaemia types 1-3 (FHH1-3), respectively. FHH3 patients have heterozygous AP2S1 missense Arg15 mutations (p.Arg15Cys, p.Arg15His or p.Arg15Leu) with hypercalcaemia, which may be marked and symptomatic, and occasional hypophosphataemia and osteomalacia. To further characterize the phenotypic spectrum and calcitropic pathophysiology of FHH3, we used CRISPR/Cas9 genome editing to generate mice harboring the AP2S1 p.Arg15Leu mutation, which causes the most severe FHH3 phenotype. Heterozygous (Ap2s1+/L15) mice were viable, and had marked hypercalcaemia, hypermagnesaemia, hypophosphataemia, and increases in alkaline phosphatase activity and fibroblast growth factor-23. Plasma 1,25-dihydroxyvitamin D was normal, and no alterations in bone mineral density or bone turnover were noted. Homozygous (Ap2s1L15/L15) mice invariably died perinatally. Co-immunoprecipitation studies showed that the AP2S1 p.Arg15Leu mutation impaired protein-protein interactions between AP2σ2 and the other AP2 subunits, and also with the CaSR. Cinacalcet, a CaSR positive allosteric modulator, decreased plasma calcium and parathyroid hormone concentrations in Ap2s1+/L15 mice, but had no effect on the diminished AP2σ2-CaSR interaction in vitro. Thus, our studies have established a mouse model that is representative for FHH3 in humans, and demonstrated that the AP2S1 p.Arg15Leu mutation causes a predominantly calcitropic phenotype, which can be ameliorated by treatment with cinacalcet.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Fator de Crescimento de Fibroblastos 23/genética , Hipercalcemia/genética , Receptores de Detecção de Cálcio/genética , Animais , Densidade Óssea/genética , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Cinacalcete/farmacologia , Modelos Animais de Doenças , Edição de Genes , Humanos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Camundongos , Mutação/genética , Fenótipo
3.
Am J Hum Genet ; 106(6): 734-747, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32386559

RESUMO

The calcium-sensing receptor (CaSR) regulates serum calcium concentrations. CASR loss- or gain-of-function mutations cause familial hypocalciuric hypercalcemia type 1 (FHH1) or autosomal-dominant hypocalcemia type 1 (ADH1), respectively, but the population prevalence of FHH1 or ADH1 is unknown. Rare CASR variants were identified in whole-exome sequences from 51,289 de-identified individuals in the DiscovEHR cohort derived from a single US healthcare system. We integrated bioinformatics pathogenicity triage, mean serum Ca concentrations, and mode of inheritance to identify potential FHH1 or ADH1 variants, and we used a Sequence Kernel Association Test (SKAT) to identify rare variant-associated diseases. We identified predicted heterozygous loss-of-function CASR variants (6 different nonsense/frameshift variants and 12 different missense variants) in 38 unrelated individuals, 21 of whom were hypercalcemic. Missense CASR variants were identified in two unrelated hypocalcemic individuals. Functional studies showed that all hypercalcemia-associated missense variants impaired heterologous expression, plasma membrane targeting, and/or signaling, whereas hypocalcemia-associated missense variants increased expression, plasma membrane targeting, and/or signaling. Thus, 38 individuals with a genetic diagnosis of FHH1 and two individuals with a genetic diagnosis of ADH1 were identified in the 51,289 cohort, giving a prevalence in this population of 74.1 per 100,000 for FHH1 and 3.9 per 100,000 for ADH1. SKAT combining all nonsense, frameshift, and missense loss-of-function variants revealed associations with cardiovascular, neurological, and other diseases. In conclusion, FHH1 is a common cause of hypercalcemia, with prevalence similar to that of primary hyperparathyroidism, and is associated with altered disease risks, whereas ADH1 is a major cause of non-surgical hypoparathyroidism.


Assuntos
Atenção à Saúde/estatística & dados numéricos , Hipercalcemia/congênito , Adulto , Idoso , Idoso de 80 Anos ou mais , Cálcio/sangue , Estudos de Coortes , Feminino , Genes Dominantes/genética , Heterozigoto , Humanos , Hipercalcemia/genética , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Prevalência , Receptores de Detecção de Cálcio/genética , Estados Unidos
4.
Pediatr Nephrol ; 37(2): 289-301, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33990852

RESUMO

The causes of hypercalcaemia in the neonate and infant are varied, and often distinct from those in older children and adults. Hypercalcaemia presents clinically with a range of symptoms including failure to thrive, poor feeding, constipation, polyuria, irritability, lethargy, seizures and hypotonia. When hypercalcaemia is suspected, an accurate diagnosis will require an evaluation of potential causes (e.g. family history) and assessment for physical features (such as dysmorphology, or subcutaneous fat deposits), as well as biochemical measurements, including total and ionised serum calcium, serum phosphate, creatinine and albumin, intact parathyroid hormone (PTH), vitamin D metabolites and urinary calcium, phosphate and creatinine. The causes of neonatal hypercalcaemia can be classified into high or low PTH disorders. Disorders associated with high serum PTH include neonatal severe hyperparathyroidism, familial hypocalciuric hypercalcaemia and Jansen's metaphyseal chondrodysplasia. Conditions associated with low serum PTH include idiopathic infantile hypercalcaemia, Williams-Beuren syndrome and inborn errors of metabolism, including hypophosphatasia. Maternal hypocalcaemia and dietary factors and several rare endocrine disorders can also influence neonatal serum calcium levels. This review will focus on the common causes of hypercalcaemia in neonates and young infants, considering maternal, dietary, and genetic causes of calcium dysregulation. The clinical presentation and treatment of patients with these disorders will be discussed.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Cálcio , Creatinina , Humanos , Hipercalcemia/genética , Hiperparatireoidismo Primário/genética , Lactente , Recém-Nascido , Hormônio Paratireóideo , Fosfatos
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806338

RESUMO

Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11ß-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11ßKO), mesenchymal (including osteoblast) (TNF-tg11ßflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11ßflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11ß-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11ß-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11ß-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11ß-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11ß-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11ß-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Inflamação/patologia , Osteoartrite/metabolismo , Osteoclastos/metabolismo
6.
Hum Mol Genet ; 28(6): 1023-1037, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445560

RESUMO

Prolactinomas are the most frequent type of pituitary tumors, which represent 10-20% of all intracranial neoplasms in humans. Prolactinomas develop in mice lacking the prolactin receptor (PRLR), which is a member of the cytokine receptor superfamily that signals via Janus kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) or phosphoinositide 3-kinase-Akt (PI3K-Akt) pathways to mediate changes in transcription, differentiation and proliferation. To elucidate the role of the PRLR gene in human prolactinomas, we determined the PRLR sequence in 50 DNA samples (35 leucocytes, 15 tumors) from 46 prolactinoma patients (59% males, 41% females). This identified six germline PRLR variants, which comprised four rare variants (Gly57Ser, Glu376Gln, Arg453Trp and Asn492Ile) and two low-frequency variants (Ile76Val, Ile146Leu), but no somatic variants. The rare variants, Glu376Gln and Asn492Ile, which were in complete linkage disequilibrium, and are located in the PRLR intracellular domain, occurred with significantly higher frequencies (P < 0.0001) in prolactinoma patients than in 60 706 individuals of the Exome Aggregation Consortium cohort and 7045 individuals of the Oxford Biobank. In vitro analysis of the PRLR variants demonstrated that the Asn492Ile variant, but not Glu376Gln, when compared to wild-type (WT) PRLR, increased prolactin-induced pAkt signaling (>1.3-fold, P < 0.02) and proliferation (1.4-fold, P < 0.02), but did not affect pSTAT5 signaling. Treatment of cells with an Akt1/2 inhibitor or everolimus, which acts on the Akt pathway, reduced Asn492Ile signaling and proliferation to WT levels. Thus, our results identify an association between a gain-of-function PRLR variant and prolactinomas and reveal a new etiology and potential therapeutic approach for these neoplasms.


Assuntos
Suscetibilidade a Doenças , Prolactinoma/etiologia , Prolactinoma/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Everolimo/farmacologia , Feminino , Genótipo , Humanos , Janus Quinases/metabolismo , Masculino , Mutação , Prolactinoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Prolactina/química , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
7.
Hum Mol Genet ; 27(21): 3720-3733, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052933

RESUMO

The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.


Assuntos
Mutação com Ganho de Função , Hipercalciúria/genética , Hipocalcemia/genética , Hipoparatireoidismo/congênito , Mutação com Perda de Função , Receptores de Detecção de Cálcio/genética , Transdução de Sinais , Sequência de Aminoácidos , Sinalização do Cálcio , Análise Mutacional de DNA , Células HEK293 , Humanos , Hipercalciúria/metabolismo , Hipocalcemia/metabolismo , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Conformação Proteica , Receptores de Detecção de Cálcio/metabolismo , Alinhamento de Sequência
8.
Hum Mol Genet ; 27(5): 901-911, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325022

RESUMO

Mutations of the sigma subunit of the heterotetrameric adaptor-related protein complex 2 (AP2σ) impair signalling of the calcium-sensing receptor (CaSR), and cause familial hypocalciuric hypercalcaemia type 3 (FHH3). To date, FHH3-associated AP2σ mutations have only been identified at one residue, Arg15. We hypothesized that additional rare AP2σ variants may also be associated with altered CaSR function and hypercalcaemia, and sought for these by analysing >111 995 exomes (>60 706 from ExAc and dbSNP, and 51 289 from the Geisinger Health System-Regeneron DiscovEHR dataset, which also contains clinical data). This identified 11 individuals to have 9 non-synonymous AP2σ variants (Arg3His, Arg15His (x3), Ala44Thr, Phe52Tyr, Arg61His, Thr112Met, Met117Ile, Glu122Gly and Glu142Lys) with 3 of the 4 individuals who had Arg15His and Met117Ile AP2σ variants having mild hypercalcaemia, thereby indicating a prevalence of FHH3-associated AP2σ mutations of ∼7.8 per 100 000 individuals. Structural modelling of the novel eight AP2σ variants (Arg3His, Ala44Thr, Phe52Tyr, Arg61His, Thr112Met, Met117Ile, Glu122Gly and Glu142Lys) predicted that the Arg3His, Thr112Met, Glu122Gly and Glu142Lys AP2σ variants would disrupt polar contacts within the AP2σ subunit or affect the interface between the AP2σ and AP2α subunits. Functional analyses of all eight AP2σ variants in CaSR-expressing cells demonstrated that the Thr112Met, Met117Ile and Glu142Lys variants, located in the AP2σ α4-α5 helical region that forms an interface with AP2α, impaired CaSR-mediated intracellular calcium (Cai2+) signalling, consistent with a loss of function, and this was rectified by treatment with the CaSR positive allosteric modulator cinacalcet. Thus, our studies demonstrate another potential class of FHH3-causing AP2σ mutations located at the AP2σ-AP2α interface.


Assuntos
Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Mutação , Receptores de Detecção de Cálcio/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades sigma do Complexo de Proteínas Adaptadoras/metabolismo , Cinacalcete/farmacologia , Bases de Dados Genéticas , Exoma , Feminino , Humanos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/genética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Proteica , Transdução de Sinais , Sequenciamento do Exoma
9.
Am J Med Genet A ; 182(11): 2521-2528, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32776440

RESUMO

Hereditary hyperuricemia may occur as part of a syndromic disorder or as an isolated nonsyndromic disease, and over 20 causative genes have been identified. Here, we report the use of whole genome sequencing (WGS) to establish a diagnosis in a family in which individuals were affected with gout, hyperuricemia associated with reduced fractional excretion of uric acid, chronic kidney disease (CKD), and secondary hyperparathyroidism, that are consistent with familial juvenile hyperuricemic nephropathy (FJHN). However, single gene testing had not detected mutations in the uromodulin (UMOD) or renin (REN) genes, which cause approximately 30-90% of FJHN. WGS was therefore undertaken, and this identified a heterozygous c.226G>C (p.Gly76Arg) missense variant in the paired box gene 2 (PAX2) gene, which co-segregated with renal tubulopathy in the family. PAX2 mutations are associated with renal coloboma syndrome (RCS), which is characterized by abnormalities in renal structure and function, and anomalies of the optic nerve. Ophthalmological examination in two adult brothers affected with hyperuricemia, gout, and CKD revealed the presence of optic disc pits, consistent with optic nerve coloboma, thereby revising the diagnosis from FJHN to RCS. Thus, our results demonstrate the utility of WGS analysis in establishing the correct diagnosis in disorders with multiple etiologies.


Assuntos
Hiperuricemia/genética , Mutação , Fator de Transcrição PAX2/genética , Adulto , Creatinina/sangue , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Hiperparatireoidismo Secundário/complicações , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Insuficiência Renal Crônica/complicações , Renina/genética , Ácido Úrico/metabolismo , Uromodulina/genética , Sequenciamento Completo do Genoma
10.
J Biol Chem ; 291(20): 10876-85, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26994139

RESUMO

Germline loss- and gain-of-function mutations of G-protein α-11 (Gα11), which couples the calcium-sensing receptor (CaSR) to intracellular calcium (Ca(2+) i) signaling, lead to familial hypocalciuric hypercalcemia type 2 (FHH2) and autosomal dominant hypocalcemia type 2 (ADH2), respectively, whereas somatic Gα11 mutations mediate uveal melanoma development by constitutively up-regulating MAPK signaling. Cinacalcet and NPS-2143 are allosteric CaSR activators and inactivators, respectively, that ameliorate signaling disturbances associated with CaSR mutations, but their potential to modulate abnormalities of the downstream Gα11 protein is unknown. This study investigated whether cinacalcet and NPS-2143 may rectify Ca(2+) i alterations associated with FHH2- and ADH2-causing Gα11 mutations, and evaluated the influence of germline gain-of-function Gα11 mutations on MAPK signaling by measuring ERK phosphorylation, and assessed the effect of NPS-2143 on a uveal melanoma Gα11 mutant. WT and mutant Gα11 proteins causing FHH2, ADH2 or uveal melanoma were transfected in CaSR-expressing HEK293 cells, and Ca(2+) i and ERK phosphorylation responses measured by flow-cytometry and Alphascreen immunoassay following exposure to extracellular Ca(2+) (Ca(2+) o) and allosteric modulators. Cinacalcet and NPS-2143 rectified the Ca(2+) i responses of FHH2- and ADH2-associated Gα11 loss- and gain-of-function mutations, respectively. ADH2-causing Gα11 mutations were demonstrated not to be constitutively activating and induced ERK phosphorylation following Ca(2+) o stimulation only. The increased ERK phosphorylation associated with ADH2 and uveal melanoma mutants was rectified by NPS-2143. These findings demonstrate that CaSR-targeted compounds can rectify signaling disturbances caused by germline and somatic Gα11 mutations, which respectively lead to calcium disorders and tumorigenesis; and that ADH2-causing Gα11 mutations induce non-constitutive alterations in MAPK signaling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipercalcemia/metabolismo , Hipocalcemia/metabolismo , Mutação de Sentido Incorreto , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Substituição de Aminoácidos , Cinacalcete/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Hipercalcemia/genética , Hipocalcemia/genética , Naftalenos/farmacologia , Receptores de Detecção de Cálcio/genética
11.
Hum Mol Genet ; 24(18): 5079-92, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26082470

RESUMO

The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.


Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Códon , Genes Dominantes , Estudos de Associação Genética , Hipercalcemia/congênito , Mutação , Complexo 2 de Proteínas Adaptadoras/química , Subunidades sigma do Complexo de Proteínas Adaptadoras/química , Adolescente , Adulto , Substituição de Aminoácidos , Biomarcadores , Linhagem Celular , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Expressão Gênica , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/genética , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade , Adulto Jovem
12.
N Engl J Med ; 369(21): 2012-2020, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24195502

RESUMO

Hyperprolactinemia that is not associated with gestation or the puerperium is usually due to tumors in the anterior pituitary gland and occurs occasionally in hereditary multiple endocrine neoplasia syndromes. Here, we report data from three sisters with hyperprolactinemia, two of whom presented with oligomenorrhea and one with infertility. These symptoms were not associated with pituitary tumors or multiple endocrine neoplasia but were due to a heterozygous mutation in the prolactin receptor gene, PRLR, resulting in an amino acid change from histidine to arginine at codon 188 (His188Arg). This substitution disrupted the high-affinity ligand-binding interface of the prolactin receptor, resulting in a loss of downstream signaling by Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5). Thus, the familial hyperprolactinemia appears to be due to a germline, loss-of-function mutation in PRLR, resulting in prolactin insensitivity.


Assuntos
Mutação em Linhagem Germinativa , Hiperprolactinemia/genética , Receptores da Prolactina/genética , Adulto , Feminino , Humanos , Janus Quinase 2/metabolismo , Masculino , Linhagem , Conformação Proteica , Receptores da Prolactina/química , Fator de Transcrição STAT5/fisiologia , Análise de Sequência de DNA , Transdução de Sinais/fisiologia
13.
Am J Med Genet A ; 170(11): 2988-2992, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27540713

RESUMO

The aim of this study was to identify the causative mutation in a family with an unusual presentation of autosomal dominant osteopetrosis (OPT), proximal renal tubular acidosis (RTA), renal stones, epilepsy, and blindness, a combination of features not previously reported. We undertook exome sequencing of one affected and one unaffected family member, followed by targeted analysis of known candidate genes to identify the causative mutation. This identified a missense mutation (c.643G>A; p.Gly215Arg) in the gene encoding the chloride/proton antiporter 7 (gene CLCN7, protein CLC-7), which was confirmed by amplification refractory mutation system (ARMS)-PCR, and to be present in the three available patients. CLC-7 mutations are known to cause autosomal dominant OPT type 2, also called Albers-Schonberg disease, which is characterized by osteosclerosis, predominantly of the spine, pelvis and skull base, resulting in bone fragility and fractures. Albers-Schonberg disease is not reported to be associated with RTA, but autosomal recessive OPT type 3 (OPTB3) with RTA is associated with carbonic anhydrase type 2 (CA2) mutations. No mutations were detected in CA2 or any other genes known to cause proximal RTA. Neither CLCN7 nor CA2 mutations have previously been reported to be associated with renal stones or epilepsy. Thus, we identified a CLCN7 mutation in a family with autosomal dominant osteopetrosis, RTA, renal stones, epilepsy, and blindness. © 2016 Wiley Periodicals, Inc.


Assuntos
Acidose Tubular Renal/diagnóstico , Acidose Tubular Renal/genética , Canais de Cloreto , Genes Dominantes , Estudos de Associação Genética , Mutação , Osteopetrose/diagnóstico , Osteopetrose/genética , Alelos , Pré-Escolar , Análise Mutacional de DNA , Exoma , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Masculino , Linhagem , Fenótipo , Radiografia
14.
Proc Natl Acad Sci U S A ; 110(17): 7014-9, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23572577

RESUMO

Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis that may not be coupled.


Assuntos
Doença de Dent/fisiopatologia , Endocitose/fisiologia , Endossomos/química , Células Epiteliais/fisiologia , Túbulos Renais Proximais/citologia , Linhagem Celular , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Doença de Dent/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Mutação/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
16.
Bone Res ; 12(1): 5, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263167

RESUMO

Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.


Assuntos
Osteoclastos , Osteogênese , Humanos , Feminino , Biópsia , Densidade Óssea , Filaminas , Receptores Depuradores Classe E
17.
Clin Cancer Res ; 30(7): 1352-1366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921808

RESUMO

PURPOSE: Patients with aggressive thyroid cancer are frequently failed by the central therapy of ablative radioiodide (RAI) uptake, due to reduced plasma membrane (PM) localization of the sodium/iodide symporter (NIS). We aimed to understand how NIS is endocytosed away from the PM of human thyroid cancer cells, and whether this was druggable in vivo. EXPERIMENTAL DESIGN: Informed by analysis of endocytic gene expression in patients with aggressive thyroid cancer, we used mutagenesis, NanoBiT interaction assays, cell surface biotinylation assays, RAI uptake, and NanoBRET to understand the mechanisms of NIS endocytosis in transformed cell lines and patient-derived human primary thyroid cells. Systemic drug responses were monitored via 99mTc pertechnetate gamma counting and gene expression in BALB/c mice. RESULTS: We identified an acidic dipeptide within the NIS C-terminus that mediates binding to the σ2 subunit of the Adaptor Protein 2 (AP2) heterotetramer. We discovered that the FDA-approved drug chloroquine (CQ) modulates NIS accumulation at the PM in a functional manner that is AP2 dependent. In vivo, CQ treatment of BALB/c mice significantly enhanced thyroidal uptake of 99mTc pertechnetate in combination with the histone deacetylase (HDAC) inhibitor vorinostat/SAHA, accompanied by increased thyroidal NIS mRNA. Bioinformatic analyses validated the clinical relevance of AP2 genes with disease-free survival in RAI-treated DTC, enabling construction of an AP2 gene-related risk score classifier for predicting recurrence. CONCLUSIONS: NIS internalization is specifically druggable in vivo. Our data, therefore, provide new translatable potential for improving RAI therapy using FDA-approved drugs in patients with aggressive thyroid cancer. See related commentary by Lechner and Brent, p. 1220.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Camundongos , Animais , Humanos , Vorinostat/farmacologia , Pertecnetato Tc 99m de Sódio/metabolismo , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Simportadores/genética , Simportadores/metabolismo , Inibidores de Histona Desacetilases , Linhagem Celular Tumoral
18.
Prog Mol Biol Transl Sci ; 195: 121-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707151

RESUMO

The calcium-sensing receptor (CaSR) is a class C GPCR that has a fundamental role in extracellular calcium homeostasis by regulating parathyroid hormone release and urinary calcium excretion. Germline mutations in the receptor cause disorders of calcium homeostasis and studies of the functional effects of these mutations has facilitated understanding of CaSR signaling and how allosteric modulators affect these responses. In the past year, five cryo-EM structures of the near full-length CaSR have been published, demonstrating how agonist-binding transmits changes in the CaSR extracellular domain to the transmembrane region to activate G proteins, and how allosteric modulators affect these structural dynamics. Additionally, several recent studies have identified CaSR interacting proteins that regulate CaSR signaling and trafficking and contribute to understanding how the receptor achieves rapid and diverse physiological responses.


Assuntos
Cálcio , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais/genética , Mutação , Proteínas de Ligação ao GTP/metabolismo
19.
J Mol Endocrinol ; 70(4)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943057

RESUMO

G protein-coupled receptors (GPCRs) have a critical role in energy homeostasis, contributing to food intake, energy expenditure and glycaemic control. Dysregulation of energy expenditure can lead to metabolic syndrome (abdominal obesity, elevated plasma triglyceride, LDL cholesterol and glucose, and high blood pressure), which is associated with an increased risk of developing obesity, diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular complications. As the prevalence of these chronic diseases continues to rise worldwide, there is an increased need to understand the molecular mechanisms by which energy expenditure is regulated to facilitate the development of effective therapeutic strategies to treat and prevent these conditions. In recent years, drugs targeting GPCRs have been the focus of efforts to improve treatments for type-2 diabetes and obesity, with GLP-1R agonists a particular success. In this review, we focus on nine GPCRs with roles in energy homeostasis that are current and emerging targets to treat obesity and diabetes. We discuss findings from pre-clinical models and clinical trials of drugs targeting these receptors and challenges that must be overcome before these drugs can be routinely used in clinics. We also describe new insights into how these receptors signal, including how accessory proteins, biased signalling, and complex spatial signalling could provide unique opportunities to develop more efficacious therapies with fewer side effects. Finally, we describe how combined therapies, in which multiple GPCRs are targeted, may improve clinical outcomes and reduce off-target effects.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Transdução de Sinais , Homeostase , Metabolismo Energético
20.
J Mol Endocrinol ; 70(3)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445946

RESUMO

The prolactin receptor (PRLR) signals predominantly through the JAK2-STAT5 pathway regulating multiple physiological functions relating to fertility, lactation, and metabolism. However, the molecular pathology and role of PRLR mutations and signalling are incompletely defined, with progress hampered by a lack of reported disease-associated PRLR variants. To date, two common germline PRLR variants are reported to demonstrate constitutive activity, with one, Ile146Leu, overrepresented in benign breast disease, while a rare activating variant, Asn492Ile, is reported to be associated with an increased incidence of prolactinoma. In contrast, an inactivating germline heterozygous PRLR variant (His188Arg) was reported in a kindred with hyperprolactinaemia, while an inactivating compound heterozygous PRLR variant (Pro269Leu/Arg171Stop) was identified in an individual with hyperprolactinaemia and agalactia. We hypothesised that additional rare germline PRLR variants, identified from large-scale sequencing projects (ExAC and GnomAD), may be associated with altered in vitro PRLR signalling activity. We therefore evaluated >300 previously uncharacterised non-synonymous, germline PRLR variants and selected 10 variants for in vitro analysis based on protein prediction algorithms, proximity to known functional domains and structural modelling. Five variants, including extracellular and intracellular domain variants, were associated with altered responses when compared to the wild-type receptor. These altered responses included loss- and gain-of-function activities related to STAT5 signalling, Akt and FOXO1 activity, as well as cell viability and apoptosis. These studies provide further insight into PRLR structure-function and indicate that rare germline PRLR variants may have diverse modulating effects on PRLR signalling, although the pathophysiologic relevance of such alterations remains to be defined.


Assuntos
Hiperprolactinemia , Receptores da Prolactina , Feminino , Humanos , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Prolactina/metabolismo , Proteínas de Transporte/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA