Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 27(3): 313-318, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35272581

RESUMO

The manufacturing of amorphous solid dispersions via hot melt extrusion is a topic of high interest in pharmaceutical development. By this technique, the drug is dissolved in the molten polymer above solubility temperature within the process time. In this study, an experimental framework is proposed determining the minimum required process temperature and the residence time using particularly low quantities of material. Drug/polymer mixtures in different ratios were processed in a micro-scale extruder while the process temperature and residence time were varied systematically. The phase situation was assessed by the turbidity of the final extrudate. Four different drug/polymer mixtures were investigated in three drug/polymer ratios. The minimum required process temperature was close to solubility temperature for each specific formulation. Moreover, an influence of residence time on the phase situation was found. About three minutes were required in order to dissolve the drug in the polymer at these process conditions.


Assuntos
Química Farmacêutica , Tecnologia de Extrusão por Fusão a Quente , Química Farmacêutica/métodos , Portadores de Fármacos , Composição de Medicamentos/métodos , Temperatura Alta , Polímeros , Solubilidade , Temperatura
2.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242659

RESUMO

Hot-melt extrusion is increasingly applied in the pharmaceutical area as a continuous processing technology, used to design custom products by co-processing drugs together with functional excipients. In this context, the residence time and processing temperature during extrusion are critical process parameters for ensuring the highest product qualities, particularly of thermosensitive materials. Within this study, a novel strategy is proposed to predict the residence time distribution and melt temperature during pharmaceutical hot-melt extrusion processes based on experimental data. To do this, an autogenic extrusion mode without external heating and cooling was applied to process three polymers (Plasdone S-630, Soluplus and Eudragit EPO) at different specific feed loads, which were set by the screw speed and the throughput. The residence time distributions were modeled based on a two-compartment approach that couples the behavior of a pipe and a stirred tank. The throughput showed a substantial effect on the residence time, whereas the influence of the screw speed was minor. On the other hand, the melt temperatures during extrusion were mainly affected by the screw speed compared to the influence of the throughput. Finally, the compilation of model parameters for the residence time and the melt temperature within design spaces serve as the basis for an optimized prediction of pharmaceutical hot-melt extrusion processes.

3.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145505

RESUMO

Even though hot melt extrusion (HME) is a commonly applied process in the pharmaceutical area, determination of the optimal process parameters is demanding. The goal of this study was to find a rational approach for predetermining suitable extrusion parameters, with a focus on material temperature and throughput. A two-step optimization procedure, called scale-independent optimization strategy (SIOS), was applied and developed further, including the use of an autogenic extrusion mode. Three different polymers (Plasdone S-630, Soluplus, and Eudragit EPO) were considered, and different optimal process parameters were assessed. The maximum barrel load was dependent on the polymers' bulk density and the extruder size. The melt temperature was influenced by the screw speed and the rheological behavior of the polymer. The melt viscosity depended mainly on the screw speed and was self-adjusted in the autogenic extrusion. A new approach, called SIOS 2.0, was suggested for calculating the extrusion process parameters (screw speed, melt temperature and throughput) based on the material data and a few extrusion experiments.

4.
Pharmaceutics ; 14(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35214002

RESUMO

In formulation development, amorphous solid dispersions (ASD) are considered to improve the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the crystallization of APIs often limits long-term stability and thus the shelf life of ASDs. It has already been shown earlier that the long-term stability of ASDs strongly depends on the storage conditions (relative humidity, temperature), the manufacturing methods, and the resulting particle sizes. In this work, ASDs composed of the model APIs Griseofulvin (GRI) or Itraconazole (ITR) and the polymers poly (vinylpyrrolidone-co-vinyl acetate) (PVPVA) or Soluplus® were manufactured via spray drying and hot-melt extrusion. Each API/polymer combination was manufactured using the two manufacturing methods with at least two different API loads and two particle-size distributions. It was a priori known that these ASDs were metastable and would crystallize over time, even in the dry stage. The amount of water absorbed by the ASD from humid air (40 °C/75% relative humidity), the solubility of the API in the ASD at humid conditions, and the resulting glass-transition temperature were predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Gordon-Taylor approach, respectively. The onset of crystallization was determined via periodic powder X-ray diffraction (PXRD) measurements. It was shown that simple heuristics such as "larger particles always crystallize later than smaller particles" are correct within one manufacturing method but cannot be transferred from one manufacturing method to another. Moreover, amorphous phase separation in the ASDs was shown to also influence their crystallization kinetics. Counterintuitively, phase separation accelerated the crystallization time, which could be explained by the glass-transition temperatures of the evolving phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA