RESUMO
Adaptable or adapted? Whether it is a question of physical, biological, or even economic systems, this problem arises when all these systems are the location of matter and energy conversion. To this interdisciplinary question, we propose a theoretical framework based on the two principles of thermodynamics. Considering a finite time linear thermodynamic approach, we show that non-equilibrium systems operating in a quasi-static regime are quite deterministic as long as boundary conditions are correctly defined. The Novikov-Curzon-Ahlborn derivation applied to non-endoreversible systems then makes it possible to precisely determine the conditions for obtaining characteristic operating points. As a result, power maximization principle (MPP), entropy minimization principle (mEP), efficiency maximization, or waste minimization states are only specific modalities of system operation. We show that boundary conditions play a major role in defining operating points because they define the intensity of the feedback that ultimately characterizes the operation. Armed with these thermodynamic foundations, we show that the intrinsically most efficient systems are also the most constrained in terms of controlling the entropy and dissipation production. In particular, we show that the best figure of merit necessarily leads to a vanishing production of power. On the other hand, a class of systems emerges, which, although they do not offer extreme efficiency or power, have a wide range of use and therefore marked robustness. It therefore appears that the number of degrees of freedom of the system leads to an optimization of the allocation of entropy production.
RESUMO
Thermoelectric system's operation needs careful attention to ensure optimal power conversion depending on the application aims. As a ternary diagram of bithermal systems allows a synthetic graphical analysis of the performance attainable by any work-heat conversion system, thermoelectric systems operation is plotted as a parametric curve function of the operating conditions (electric current and reservoirs' temperature), based on the standard model of Ioffe. The threshold of each operating mode (heat engine, heat pump, thermal dissipation, and forced thermal transfer), along with the optimal efficiencies and powers of the heat pump and heat engine modes, are characterized graphically and analytically as a function of the material properties and the operating conditions. The sensibility of the performance aims (maximum efficiency vs. maximum power) with the operating conditions is, thus, highlighted. In addition, the specific contributions of each phenomenon involved in the semiconductor (reversible Seebeck effect, irreversible heat leakage by conduction and irreversible thermal dissipation by Joule effect) are discussed in terms of entropy generation. Finally, the impact of the exo-irreversibilities on the performance is analyzed by taking the external thermal resistances into account.
RESUMO
For a circuit made of thermodynamic devices in stationary nonequilibrium, we determine the mean currents (of energy, matter, charge, etc.) exchanged with external reservoirs driving the circuit out of equilibrium. Starting from the conductance matrix describing the nonlinear current-force characteristics of each device, we obtain the conductance matrix of the composite device. This generalizes the rule of resistance addition (serial association) or conductance addition (parallel association) in stationary out-of-equilibrium thermodynamics and for multiple coupled potentials and currents of different natures. Our work emphasizes the pivotal role of conservation laws when creating circuits of complex devices. Finally, two examples illustrate among others the determination of the conservation laws for the serial and parallel associations of thermodynamic devices.
RESUMO
This paper presents a conceptual model describing the medium and long term co-evolution of natural and socio-economic subsystems of Earth. An economy is viewed as an out-of-equilibrium dissipative structure that can only be maintained with a flow of energy and matter. The distinctive approach emphasized here consists in capturing the economic impact of natural ecosystems' depletion by human activities via a pinch of thermodynamic potentials. This viewpoint allows: (i) the full-blown integration of a limited quantity of primary resources into a non-linear macrodynamics that is stock-flow consistent both in terms of matter-energy and economic transactions; (ii) the inclusion of natural and forced recycling; (iii) the inclusion of a friction term which reflects the impossibility to produce (and recycle)goods and services without exuding energy and matter wastes, and (iv) the computation of the anthropically produced entropy as a function of metabolizing intensity and frictions. Analysis and numerical computations confirm the role played by intensity and frictions as key factors for sustainability by contrast with real GDP growth-as well as the interplay between resource scarcity, income inequality, and inflation. A more egalitarian society with moderate inflation turns out to be more sustainable than an unequal society with low inflation. Our approach is flexible enough to allow for various economic models to be embedded into our thermodynamic framework. Finally, we propose the open source ECODYCO software as a first complete realization implementing economic dynamics in a multi-resource environment.
RESUMO
Effective bioinspiration requires dialogue between designers and biologists, and this dialogue must be rooted in a shared scientific understanding of living systems. To support learning from "nature's overarching design lessons" the Biomimicry Institute has produced ten "Unifying Patterns of Nature". These patterns have been developed to engage with those interested in finding biologically inspired solutions to human challenges. Yet, although well-intentioned and appealing, they are likely to dishearten biologists. The aim of this paper is to identify why and propose alternative principles based on evolutionary theory.