Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Anal Chem ; 93(17): 6646-6655, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33797893

RESUMO

Developing tools that are able to monitor transient neurochemical dynamics is important to decipher brain chemistry and function. Multifunctional polymer-based fibers have been recently applied to monitor and modulate neural activity. Here, we explore the potential of polymer fibers comprising six graphite-doped electrodes and two microfluidic channels within a flexible polycarbonate body as a platform for sensing pH and neurometabolic lactate. Electrodes were made into potentiometric sensors (responsive to pH) or amperometric sensors (lactate biosensors). The growth of an iridium oxide layer made the fiber electrodes responsive to pH in a physiologically relevant range. Lactate biosensors were fabricated via platinum black growth on the fiber electrode, followed by an enzyme layer, making them responsive to lactate concentration. Lactate fiber biosensors detected transient neurometabolic lactate changes in an in vivo mouse model. Lactate concentration changes were associated with spreading depolarizations, known to be detrimental to the injured brain. Induced waves were identified by a signature lactate concentration change profile and measured as having a speed of ∼2.7 mm/min (n = 4 waves). Our work highlights the potential applications of fiber-based biosensors for direct monitoring of brain metabolites in the context of injury.


Assuntos
Técnicas Biossensoriais , Grafite , Animais , Eletrodos , Concentração de Íons de Hidrogênio , Ácido Láctico , Camundongos
2.
Analyst ; 145(5): 1894-1902, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31984382

RESUMO

This work describes a fully-integrated portable microfluidic analysis system for real-time monitoring of dynamic changes in glucose and lactate occurring in the brain as a result of cardiac arrest and resuscitation. Brain metabolites are sampled using FDA-approved microdialysis probes and coupled to a high-temporal resolution 3D printed microfluidic chip housing glucose and lactate biosensors. The microfluidic biosensors are integrated with a wireless 2-channel potentiostat forming a compact analysis system that is ideal for use in a crowded operating theatre. Data are transmitted to a custom-written app running on a tablet for real-time visualisation of metabolic trends. In a proof-of-concept porcine model of cardiac arrest, the integrated analysis system proved reliable in a challenging environment resembling a clinical setting; noise levels were found to be comparable with those seen in the lab and were not affected by major clinical interventions such as defibrillation of the heart. Using this system, we were able, for the first time, to measure changes in brain glucose and lactate levels caused by cardiac arrest and resuscitation; the system was sensitive to clinical interventions such as infusion of adrenaline. Trends suggest that cardiopulmonary resuscitation alone does not meet the high energy demands of the brain as metabolite levels only return to their values preceding cardiac arrest upon return of spontaneous circulation.


Assuntos
Encéfalo/metabolismo , Reanimação Cardiopulmonar , Glucose/análise , Parada Cardíaca/metabolismo , Ácido Láctico/análise , Aerococcus/enzimologia , Animais , Aspergillus niger/enzimologia , Biomarcadores/análise , Biomarcadores/química , Técnicas Biossensoriais/métodos , Isquemia Encefálica/metabolismo , Feminino , Glucose/química , Glucose Oxidase/química , Parada Cardíaca/terapia , Ácido Láctico/química , Microdiálise , Técnicas Analíticas Microfluídicas/métodos , Oxigenases de Função Mista/química , Monitorização Neurofisiológica/métodos , Estudo de Prova de Conceito , Suínos
3.
J Neuroeng Rehabil ; 17(1): 114, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825829

RESUMO

BACKGROUND: Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury outside the ICU. METHODS: We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support variable gain programming to automatically tune the input dynamic range and address biosensors' falling sensitivity. The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE) receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored, processed and visualised in real-time. Bench testing has been used to validate device performance. RESULTS: The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to +1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents. Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25 ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud. CONCLUSION: The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data recorded in the cloud application could be used to help diagnosis and guide rehabilitation.


Assuntos
Técnicas Biossensoriais/instrumentação , Lesões Encefálicas Traumáticas , Eletrocorticografia/instrumentação , Monitorização Ambulatorial/instrumentação , Monitorização Neurofisiológica/instrumentação , Química Encefálica , Humanos , Masculino
4.
Anal Chem ; 91(22): 14631-14638, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31647870

RESUMO

Currently, there is a severe shortage of donor kidneys that are fit for transplantation, due in part to a lack of adequate viability assessment tools for transplant organs. This work presents the integration of a novel wireless two-channel amperometric potentiostat with microneedle-based glucose and lactate biosensors housed in a 3D printed chip to create a microfluidic biosensing system that is genuinely portable. The wireless potentiostat transmits data via Bluetooth to an Android app running on a tablet. The whole miniaturized system is fully enclosed and can be integrated with microdialysis to allow continuous monitoring of tissue metabolite levels in real time. We have also developed a wireless portable automated calibration platform so that biosensors can be calibrated away from the laboratory and in transit. As a proof of concept, we have demonstrated the use of this portable analysis system to monitor porcine kidneys for the first time from organ retrieval, through warm ischemia, transportation on ice, right through to cold preservation and reperfusion. The portable system is robust and reliable in the challenging conditions of the abattoir and during kidney transportation and can detect clear physiological changes in the organ associated with clinical interventions.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Rim/metabolismo , Ácido Láctico/análise , Técnicas Analíticas Microfluídicas/métodos , Monitorização Fisiológica/métodos , Aerococcus/enzimologia , Animais , Aspergillus niger/enzimologia , Proteínas de Bactérias/química , Soluções para Diálise/análise , Proteínas Fúngicas/química , Glucose/química , Glucose Oxidase/química , Dispositivos Lab-On-A-Chip , Ácido Láctico/química , Microdiálise , Técnicas Analíticas Microfluídicas/instrumentação , Oxigenases de Função Mista/química , Estudo de Prova de Conceito , Suínos
5.
Analyst ; 141(22): 6270-6277, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27796386

RESUMO

A microfluidic sensor system based on a carbon nanotube-epoxy composite electrode was fabricated to allow detection of the presence of the anti-cancer drug carboplatin in healthy tissue in real time during chemotherapy. Detection of carboplatin was carried out by observing the effects of the drug on the differential pulse voltammetry of free purine bases using a novel carbon nanotube-epoxy composite electrode. In free solution these electrodes performed better than glassy carbon electrodes for oxidation of the free purine bases AMP and GMP, and than DNA-modified carbon nanotube-epoxy composite sensors for detection of carboplatin. On-line carboplatin detection was performed using a computer-controlled microfluidic platform. The methodology for on-line carboplatin detection was optimised in terms of the analysis time and to allow repeated carboplatin measurement using the same electrode. Microdialysis sampling and our microfluidic platform were combined to give a proof-of-concept system for real-time carboplatin detection with a limit of detection of 0.014 µM carboplatin in the sampled media. This paper is dedicated to Craig Lunte's pioneering work in analysis and microdialysis.


Assuntos
Carboplatina/análise , Técnicas Analíticas Microfluídicas , Nanotubos de Carbono , Carbono , Eletrodos , Oxirredução
6.
Anal Chem ; 87(15): 7763-70, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26070023

RESUMO

This work presents the design, fabrication, and characterization of a robust 3D printed microfluidic analysis system that integrates with FDA-approved clinical microdialysis probes for continuous monitoring of human tissue metabolite levels. The microfluidic device incorporates removable needle type integrated biosensors for glucose and lactate, which are optimized for high tissue concentrations, housed in novel 3D printed electrode holders. A soft compressible 3D printed elastomer at the base of the holder ensures a good seal with the microfluidic chip. Optimization of the channel size significantly improves the response time of the sensor. As a proof-of-concept study, our microfluidic device was coupled to lab-built wireless potentiostats and used to monitor real-time subcutaneous glucose and lactate levels in cyclists undergoing a training regime.


Assuntos
Técnicas Biossensoriais , Microdiálise , Técnicas Analíticas Microfluídicas/instrumentação , Monitorização Fisiológica/instrumentação , Impressão Tridimensional , Eletrodos , Glucose/análise , Humanos , Ácido Láctico/análise
8.
J Am Chem Soc ; 131(7): 2472-4, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19178142

RESUMO

In Alzheimer's disease, the tau protein forms intracellular amyloid fibrils in which the (306)VQIVYK(311) sequence adopts parallel beta-sheets, enabling fibril formation via cross-beta "steric zippers". We investigated aggregation of the protected segment (Ac-VQIVYK-NHMe) using IR/UV hole-burning spectroscopy in the NH stretch region in a cold molecular beam combined with DFT calculations in order to characterize its structure and identify the noncovalent interactions generally responsible for aggregation and stabilization in amyloid peptides. The computed and experimental IR spectra suggest that the tau-protein fragments form extended beta-strands that are combined in a beta-sheet through characteristic backbone hydrogen bonds, indicating that this secondary structure is energetically most attractive and readily forms in the gas phase, without any "guiding" interactions from a solvent or protein environment.


Assuntos
Proteínas tau/química , Dimerização , Modelos Moleculares , Oligopeptídeos/química , Estrutura Secundária de Proteína , Espectrometria de Fluorescência/métodos , Espectrofotometria Infravermelho/métodos
9.
Lab Chip ; 19(15): 2537-2548, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31290529

RESUMO

We present approaches to facilitate the use of microfluidics outside of the laboratory, in our case within a clinical setting and monitoring from human subjects, where the complexity of microfluidic devices requires high skill and expertise and would otherwise limit translation. Microfluidic devices show great potential for converting complex laboratory protocols into on-chip processes. We demonstrate a flexible microfluidic platform can be coupled to microfluidic biosensors and used in conjunction with clinical microdialysis. The versatility is demonstrated through a series of examples of increasing complexity including analytical processes relevant to a clinical environment such as automatic calibration, standard addition, and more general processes including system optimisation, reagent addition and homogenous enzyme reactions. The precision and control offered by this set-up enables the use of microfluidics by non-experts in clinical settings, increasing uptake and usage in real-world scenarios. We demonstrate how this type of system is helpful in guiding physicians in real-time clinical decision-making.


Assuntos
Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Pesquisa Translacional Biomédica , Lesões Encefálicas Traumáticas/diagnóstico , Calibragem , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Microdiálise
10.
ACS Sens ; 4(4): 1072-1080, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30950598

RESUMO

Antimicrobial resistance poses a global threat to patient health. Improving the use and effectiveness of antimicrobials is critical in addressing this issue. This includes optimizing the dose of antibiotic delivered to each individual. New sensing approaches that track antimicrobial concentration for each patient in real time could allow individualized drug dosing. This work presents a potentiometric microneedle-based biosensor to detect levels of ß-lactam antibiotics in vivo in a healthy human volunteer. The biosensor is coated with a pH-sensitive iridium oxide layer, which detects changes in local pH as a result of ß-lactam hydrolysis by ß-lactamase immobilized on the electrode surface. Development and optimization of the biosensor coatings are presented, giving a limit of detection of 6.8 µM in 10 mM PBS solution. Biosensors were found to be stable for up to 2 weeks at -20 °C and to withstand sterilization. Sensitivity was retained after application for 6 h in vivo. Proof-of-concept results are presented showing that penicillin concentrations measured using the microneedle-based biosensor track those measured using both discrete blood and microdialysis sampling in vivo. These preliminary results show the potential of this microneedle-based biosensor to provide a minimally invasive means to measure real-time ß-lactam concentrations in vivo, representing an important first step toward a closed-loop therapeutic drug monitoring system.


Assuntos
Antibacterianos/análise , Técnicas Biossensoriais/métodos , Monitoramento de Medicamentos/métodos , Agulhas , Penicilina G/análise , Penicilina V/análise , Antibacterianos/química , Técnicas Biossensoriais/instrumentação , Monitoramento de Medicamentos/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Hidrólise , Irídio/química , Limite de Detecção , Penicilina G/química , Penicilina V/química , Estudo de Prova de Conceito , beta-Lactamases/química
11.
Lab Chip ; 19(11): 2038-2048, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094398

RESUMO

This paper presents the design, optimisation and fabrication of a mechanically robust 3D printed microfluidic device for the high time resolution online analysis of biomarkers in a microdialysate stream at microlitre per minute flow rates. The device consists of a microfluidic channel with secure low volume connections that easily integrates electrochemical biosensors for biomarkers such as glutamate, glucose and lactate. The optimisation process of the microfluidic channel fabrication, including for different types of 3D printer, is explained and the resulting improvement in sensor response time is quantified. The time resolution of the device is characterised by recording short lactate concentration pulses. The device is employed to record simultaneous glutamate, glucose and lactate concentration changes simulating the physiological response to spreading depolarisation events in cerebrospinal fluid dialysate. As a proof-of-concept study, the device is then used in the intensive care unit for online monitoring of a brain injury patient, demonstrating its capabilities for clinical monitoring.


Assuntos
Encéfalo/metabolismo , Dispositivos Lab-On-A-Chip , Microdiálise/instrumentação , Neuroquímica/instrumentação , Impressão Tridimensional , Técnicas Biossensoriais , Encéfalo/citologia , Desenho de Equipamento , Humanos , Sistemas On-Line , Razão Sinal-Ruído
12.
Lancet Digit Health ; 1(7): e335-e343, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-33323208

RESUMO

BACKGROUND: Enhanced methods of drug monitoring are required to support the individualisation of antibiotic dosing. We report the first-in-human evaluation of real-time phenoxymethylpenicillin monitoring using a minimally invasive microneedle-based ß-lactam biosensor in healthy volunteers. METHODS: This first-in-human, proof-of-concept study was done at the National Institute of Health Research/Wellcome Trust Imperial Clinical Research Facility (Imperial College London, London, UK). The study was approved by London-Harrow Regional Ethics Committee. Volunteers were identified through emails sent to a healthy volunteer database from the Imperial College Clinical Research Facility. Volunteers, who had to be older than 18 years, were excluded if they had evidence of active infection, allergies to penicillin, were at high risk of skin infection, or presented with anaemia during screening. Participants wore a solid microneedle ß-lactam biosensor for up to 6 h while being dosed at steady state with oral phenoxymethylpenicillin (five 500 mg doses every 6 h). On arrival at the study centre, two microneedle sensors were applied to the participant's forearm. Blood samples (via cannula, at -30, 0, 10, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240 min) and extracellular fluid (ECF; via microdialysis, every 15 min) pharmacokinetic (PK) samples were taken during one dosing interval. Phenoxymethylpenicillin concentration data obtained from the microneedles were calibrated using locally estimated scatter plot smoothing and compared with free-blood and microdialysis (gold standard) data. Phenoxymethylpenicillin PK for each method was evaluated using non-compartmental analysis. Area under the concentration-time curve (AUC), maximum concentration, and time to maximum concentration were compared. Bias and limits of agreement were investigated with Bland-Altman plots. Microneedle biosensor limits of detection were estimated. The study was registered with ClinicalTrials.gov, number NCT03847610. FINDINGS: Ten healthy volunteers participated in the study. Mean age was 42 years (SD 14). Seven (70%) were men. Microdialysis and microneedle results were similar for phenoxymethylpenicillin ECF maximum concentration (0·74 mg/L vs 0·64 mg/L; 95% CI -0·24 to 0·44; p=0·53), time to maximum concentration (1·18 h vs 1·10 h; -0·52 to 0·67; p=0·79), and AUC (1·54 mg × h/L vs 1·67 mg × h/L; -1·10 to 0·85; p=0·79). In total, 440 time points were compared with mean difference between measurements -0·16 mg/L (95% CI -1·30 to 0·82). Mean phenoxymethylpenicillin AUCs for free serum and microneedle PK were similar (1·77 mg × h/L [SD 0·59] vs 1·67 mg × h/L [1·00]; -0·77 to 0·97; p=0·81). Median coefficient of variation between sensors within individuals was 7% (IQR 4-17). Limit of detection for the microneedles was estimated at 0·17 mg/L. INTERPRETATION: This study is proof-of-concept of real-time, microneedle sensing of penicillin in vivo. Future work will explore microneedle use in patient populations, their role in data generation to inform dosing recommendations, and their incorporation into closed-loop control systems for automated drug delivery. FUNDING: National Institute for Health Research Imperial Biomedical Research Centre, Mérieux Foundation.


Assuntos
Antibacterianos , Técnicas Biossensoriais , Monitoramento de Medicamentos , Voluntários Saudáveis , Agulhas , Penicilina V , Adulto , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Líquido Extracelular , Feminino , Humanos , Londres , Masculino , Microdiálise , Penicilina V/administração & dosagem , Penicilina V/farmacocinética
13.
J Am Chem Soc ; 130(44): 14640-50, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18844349

RESUMO

The (306)VQIVYK(311) sequence in the tau peptide is essential for the formation of intracellular amyloid fibrils related to Alzheimer's disease, where it forms interdigitating cross-beta-structures. The inherent conformational preferences of the capped hexapeptide Ac-VQIVYK-NHMe were characterized in the gas phase. IR/UV double-resonance spectroscopy of the peptide isolated in a cold molecular beam was used to probe the conformation of the neutral peptide. The influence of protonation at the lysine side chain was investigated at 298 K by characterizing the protonated peptide ion, Ac-VQIVYK(H(+))-NHMe, with IRMPD spectroscopy in the fingerprint and amide I/II band region in an FTICR mass spectrometer. The conformations for both neutral and protonated peptides were predicted by an extensive conformational search procedure followed by cluster analysis and then DFT calculations. Comparison of the experimental and computed IR spectra, with consideration of the relative energies, was used to assign the dominant conformations observed. The neutral peptide adopts a beta-hairpin-like conformation with two loosely extended peptide chains, demonstrating the preference of the sequence for extended beta-strand-like structures. In the protonated peptide, the lysine NH3(+) disrupts this extended conformation by binding to the backbone and induces a transition to a random-coil-like structure.


Assuntos
Amiloide/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Amiloide/metabolismo , Gases , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Prótons , Espectrofotometria Infravermelho/métodos , Termodinâmica , Proteínas tau/química , Proteínas tau/metabolismo
14.
Anal Methods ; 10(44): 5273-5281, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31490460

RESUMO

Online organ monitoring could provide clinicians with critical information regarding organ health prior to transplantation and could aid clinical decision-making. This paper presents the methodology of online microdialysis for real-time monitoring of human organs ex vivo. We describe how rapid sampling microdialysis can be incorporated with organ perfusion machines to create a robust organ monitoring system and demonstrate its use in monitoring human and porcine kidneys as well as human and porcine pancreases. In this paper we also show the potential usefulness of this methodology for evaluating novel interventions in a research setting. The analysis system can be configured either to analyse two analytes in one organ, allowing for ratiometric analysis, or alternatively to monitor one analyte in two organs simultaneously, allowing direct comparison. It was found to be reliable over long monitoring periods in real clinical use. The results clearly show that the analysis system is sensitive to differences between organs and therefore has huge potential as an ex vivo organ monitoring tool.

15.
Sci Rep ; 8(1): 14695, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279418

RESUMO

Currently, there are no valid pre-operatively established biomarkers or algorithms that can accurately predict surgical and clinical outcome for patients with advanced epithelial ovarian cancer (EOC). In this study, we suggest that profiling of tumour parameters such as bioelectrical-potential and metabolites, detectable by electronic sensors, could facilitate the future development of devices to better monitor disease and predict surgical and treatment outcomes. Biopotential was recorded, using a potentiometric measurement system, in ex vivo paired non-cancerous and cancerous omental tissues from advanced stage EOC (n = 36), and lysates collected for metabolite measurement by microdialysis. Consistently different biopotential values were detected in cancerous tissue versus non-cancerous tissue across all cases (p < 0.001). High tumour biopotential levels correlated with advanced tumour stage (p = 0.048) and tumour load, and negatively correlated with stroma. Within our EOC cohort and specifically the high-grade serous subtype, low biopotential levels associated with poorer progression-free survival (p = 0.0179, p = 0.0143 respectively). Changes in biopotential levels significantly correlated with common apoptosis related pathways. Lactate and glucose levels measured in paired tissues showed significantly higher lactate/glucose ratio in tissues with low biopotential (p < 0.01, n = 12). Our study proposes the feasibility of biopotential and metabolite monitoring as a biomarker modality profiling EOC to predict surgical and clinical outcomes.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Epitelial do Ovário/mortalidade , Impedância Elétrica , Omento/química , Neoplasias Ovarianas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas Biossensoriais , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/cirurgia , Procedimentos Cirúrgicos de Citorredução , Progressão da Doença , Eletrodos , Feminino , Humanos , Estimativa de Kaplan-Meier , Microdiálise , Microfluídica , Pessoa de Meia-Idade , Omento/patologia , Omento/cirurgia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia , Prognóstico , Intervalo Livre de Progressão
16.
Front Hum Neurosci ; 10: 212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242477

RESUMO

Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30-40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation.

17.
Phys Chem Chem Phys ; 11(27): 5843-50, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19842502

RESUMO

Certain pentapeptide sequences are absent from all known universal protein primary structures, even though they are found in the non-coding regions of DNA. These 'forbidden' sequences may have been rejected by evolution because they disrupt the formation of functional secondary protein structures. The uncapped pentapeptides FFMCT and WCFNL, which model the two 'most forbidden' sequences, were studied in a cold molecular beam using IR/UV holeburning spectroscopy, and DFT calculations were carried out to help reveal their inherent conformational preferences. Computed IR spectra for different structures were compared to the experimental IR spectra in the Amide I/II and Amide A vibrational band regions. The conformational assignments based on this analysis provide preliminary clues for understanding how these peptides may form structures that hinder the desired protein folding process. For FFMCT the structural analysis indicates a strong preference for a beta-turn conformation, where the C-terminal OH binds to the N-terminal F side chain. The WCFNL results show that the peptide adopts a 3(10)-helical conformation with free N- and C-termini, and less backbone hydrogen bonding than in FFMCT. Both structural motifs could drastically disturb the overall folding process when being part of a peptide or protein.


Assuntos
Peptídeos/química , Espectrofotometria Infravermelho/métodos , Sequência de Aminoácidos , Ligação de Hidrogênio , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA