Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Toxicol ; 33(1 Suppl): 136S-155S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567345

RESUMO

Aromatic extracts (AEs; distillate AEs [DAEs] and residual AEs [RAEs]) are complex, highly viscous liquid petroleum streams with variable compositions derived by extraction of aromatic compounds from distillate and residual petroleum fractions from a vacuum distillation tower, respectively. The DAEs generally contain significant amounts of polycyclic aromatic compounds (PACs) and are carcinogenic. The RAEs typically contain lower concentrations of biologically active PACs. The PACs in refinery streams can cause effects in repeated-dose and developmental toxicity studies. In a 13-week dermal study, light paraffinic DAE had several dose-related effects involving multiple organs; no-observed-effect level was <5 mg/kg/d, with no overt toxicity. Predicted dose-responses at 10% (PDR10s), modeled doses causing a 10% effect on sensitive end points based on PAC content, ranged from 25 to 78 mg/kg/d for untested paraffinic DAEs. The no observed adverse effect level (NOAEL) for developmental toxicity for light paraffinic DAE was 5 mg/kg/d. Statistically significant developmental effects at higher doses were associated with maternal effects. The PDR10s for developmental toxicity of paraffinic DAEs ranged from 7 to >2000 mg/kg/d, reflecting differences due to variation in PACs. The NOAELs for RAEs were 500 mg/kg for 90-day studies and 2000 mg/kg for developmental toxicity. Reproductive toxicity is not considered to be a sensitive end point for AEs based on the toxicity tests with DAEs, RAEs, and other PAC-containing petroleum substances. In vivo micronucleus tests on heavy paraffinic DAE, RAEs, and a range of other petroleum substances have been negative. The exception to this general trend was a marginally positive response with light paraffinic DAE. Most DAEs are considered unlikely to produce chromosomal effects in vivo.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade Subcrônica , Animais , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Testes para Micronúcleos , Nível de Efeito Adverso não Observado , Petróleo/análise , Petróleo/toxicidade , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
2.
Int J Toxicol ; 33(1 Suppl): 110S-135S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567344

RESUMO

Lubricating oil base stocks (LOBs) are substances used in the manufacture of finished lubricants and greases. They are produced from residue remaining after atmospheric distillation of crude oil that is subsequently fractionated by vacuum distillation and additional refining steps. Initial LOB streams that have been produced by vacuum distillation but not further refined may contain polycyclic aromatic compounds (PACs) and may present carcinogenic hazards. In modern refineries, LOBs are further refined by multistep processes including solvent extraction and/or hydrogen treatment to reduce the levels of PACs and other undesirable constituents. Thus, mildly (insufficiently) refined LOBs are potentially more hazardous than more severely (sufficiently) refined LOBs. This article discusses the evaluation of LOBs using statistical models based on content of PACs; these models indicate that insufficiently refined LOBs (potentially carcinogenic LOBs) can also produce systemic and developmental effects with repeated dermal exposure. Experimental data were also obtained in ten 13-week dermal studies in rats, eight 4-week dermal studies in rabbits, and seven dermal developmental toxicity studies with sufficiently refined LOBs (noncarcinogenic and commonly marketed) in which no observed adverse effect levels for systemic toxicity and developmental toxicity were 1000 to 2000 mg/kg/d with dermal exposures, typically the highest dose tested. Results in both oral and inhalation developmental toxicity studies were similar. This absence of toxicologically relevant findings was consistent with lower PAC content of sufficiently refined LOBs. Based on data on reproductive organs with repeated dosing and parameters in developmental toxicity studies, sufficiently refined LOBs are likely to have little, if any, effect on reproductive parameters.


Assuntos
Petróleo/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Administração Cutânea , Administração por Inalação , Administração Oral , Animais , Carcinógenos/toxicidade , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Dose Letal Mediana , Nível de Efeito Adverso não Observado , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Gravidez , Ratos
3.
Int J Toxicol ; 33(1 Suppl): 95S-109S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24179029

RESUMO

Heavy fuel oil (HFO) category substances are used to manufacture HFO, a product used in industrial boilers and marine diesel engines. Commercial HFOs and blending stream components are substances of complex and variable composition, composed of C20 to >C50 hydrocarbons, although lower molecular weight material may be added to reduce viscosity and improve flow characteristics. An HFO blending stream (catalytically cracked clarified oil [CCCO]) was tested for target organ and developmental toxicity in rats following repeated dermal administration at doses of 5, 25, or 50 mg/kg/d. In the repeated dose study, there was evidence of increased liver weights, reduced thymus weights, and reductions in hematological parameters with an overall no observed adverse effect level (NOAEL) of 5 mg/kg/d. In the developmental toxicity test, there were significant reductions in fetal survival, significant increases in resorption frequency, and significantly reduced fetal weights with an overall NOAEL of 5 mg/kg/d. These target organ and developmental effects are associated with the types and levels of aromatic constituents in these substances. Among HFO blending streams, CCCOs have the highest levels of aromatics and, because they produce the characteristic toxicological effects at the lowest levels, are considered as "reasonable worst-case examples" for this group of substances. Other HFO category members with lower levels of aromatics produce similar effects but have higher NOAELs. The potential for target organ and developmental effects of other HFO category members can be predicted from information on the types and levels of the aromatic constituents present in these substances.


Assuntos
Óleos Combustíveis/toxicidade , Fígado/efeitos dos fármacos , Pele/efeitos dos fármacos , Timo/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Atrofia , Relação Dose-Resposta a Droga , Feminino , Hidrocarbonetos/análise , Hidrocarbonetos/toxicidade , Fígado/metabolismo , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodução/efeitos dos fármacos , Pele/metabolismo , Timo/metabolismo
4.
Int J Toxicol ; 33(1 Suppl): 78S-94S, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24179030

RESUMO

Gas oils, used to manufacture diesel fuel and residential heating oil, are complex hydrocarbon substances with carbon numbers of C9-C30 and boiling ranges of approximately 150 °C to 450 °C. Target organ (liver enlargement, reduced thymus weights, and reductions in hematological parameters) and developmental (reduced fetal viability, increased resorption frequency, and reduced fetal weights) effects are associated with aromatic constituents present in some gas oils. Two types of gas oils were tested for repeated-dose and developmental toxicity following repeated dermal administration. A blend of commercial diesel fuels containing 26% aromatics, primarily single-ring compounds, did not cause either target organ or developmental effects at levels up to 600 mg/kg/d. "Cracked" gas oils containing higher levels of aromatic constituents were also tested. Because of limited sample availability, 2 cracked gas oil samples were tested, one for systemic effects and the other for developmental toxicity. The sample tested in the repeated-dose toxicity study (81% aromatics including approximately 10% 3-ring compounds) produced increased liver weights, reduced thymus weights, and reductions in hematological parameters. The overall no observed adverse effect level (NOAEL) was 100 mg/kg/d. The sample tested for developmental toxicity (65% aromatics including approximately 5% 3-ring compounds) resulted in significant reductions in fetal survival, significant increases in resorption frequency, and significant reductions in fetal weights with an overall NOAEL of 100 mg/kg/d. In summary, gas oils may or may not cause target organ and/or developmental effects depending on the levels and types of aromatic constituents that they contain.


Assuntos
Gases/toxicidade , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Petróleo/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Gases/química , Hidrocarbonetos/química , Hidrocarbonetos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Petróleo/análise , Ratos , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA