Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(48): e2205637119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417440

RESUMO

We investigate analytically and numerically a basic model of driven Brownian motion with a velocity-dependent friction coefficient in nonlinear viscoelastic media featured by a stress plateau at intermediate shear velocities and profound memory effects. For constant force driving, we show that nonlinear oscillations of a microparticle velocity and position emerge by a Hopf bifurcation at a small critical force (first dynamical phase transition), where the friction's nonlinearity seems to be wholly negligible. They also disappear by a second Hopf bifurcation at a much larger force value (second dynamical phase transition). The bifurcation diagram is found in an analytical form confirmed by numerics. Surprisingly, the particles' inertial and the medium's nonlinear properties remain crucial even in a parameter regime where they were earlier considered entirely negligible. Depending on the force and other parameters, the amplitude of oscillations can significantly exceed the size of the particles, and their period can span several time decades, primarily determined by the memory time of the medium. Such oscillations can also be thermally excited near the edges of dynamical phase transitions. The second dynamical phase transition combined with thermally induced stochastic limit cycle oscillations leads to a giant enhancement of diffusion over the limit of vast driving forces, where an effective linearization of stochastic dynamics occurs.


Assuntos
Difusão , Transição de Fase , Movimento (Física)
2.
Phys Rev Lett ; 127(11): 110601, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558948

RESUMO

We investigate a basic model of nonlinear Brownian motion in a thermal environment, where nonlinear friction interpolates between viscous Stokes and dry Coulomb friction. We show that superdiffusion and supertransport emerge as a nonequilibrium critical phenomenon when such a Brownian motion is driven out of thermal equilibrium by a constant force. Precisely at the edge of a phase transition, velocity fluctuations diverge asymptotically and diffusion becomes superballistic. The autocorrelation function of velocity fluctuations in this nonergodic regime exhibits a striking aging behavior.

3.
Phys Rev Lett ; 123(18): 180603, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763886

RESUMO

Diffusion in tilted washboard potentials can paradoxically exceed free normal diffusion. The effect becomes much stronger in the underdamped case due to inertial effects. What happens upon inclusion of usually neglected fractional hydrodynamics memory effects (Basset-Boussinesq frictional force), which result in a heavy algebraic tail of the velocity autocorrelation function of the potential-free diffusion making it transiently superdiffusive? Will a giant enhancement of diffusion become even stronger, and the transient superdiffusion last even longer? These are the questions that we answer in this Letter based on an accurate numerical investigation. We show that a resonancelike enhancement of normal diffusion becomes indeed much stronger and sharper. Moreover, a long-lasting transient regime of superdiffusion, including Richardson-like diffusion, ⟨δx^{2}(t)⟩∝t^{3} and ballistic supertransport, ⟨δx(t)⟩∝t^{2}, is revealed.

4.
Phys Chem Chem Phys ; 20(37): 24140-24155, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30206605

RESUMO

Viscoelastic subdiffusion governed by a fractional Langevin equation is studied numerically in a random Gaussian environment modeled by stationary Gaussian potentials with decaying spatial correlations. This anomalous diffusion is archetypal for living cells, where cytoplasm is known to be viscoelastic and a spatial disorder also naturally emerges. We obtain some first important insights into it within a model one-dimensional study. Two basic types of potential correlations are studied: short-range exponentially decaying and algebraically slow decaying with an infinite correlation length, both for a moderate (several kBT, in the units of thermal energy), and strong (5-10kBT) disorder. For a moderate disorder, it is shown that on the ensemble level viscoelastic subdiffusion can easily overcome the medium's disorder. Asymptotically, it is not distinguishable from the disorder-free subdiffusion. However, a strong scatter in single-trajectory averages is nevertheless seen even for a moderate disorder. It features a weak ergodicity breaking, which occurs on a very long yet transient time scale. Furthermore, for a strong disorder, a very long transient regime of logarithmic, Sinai-type diffusion emerges. It can last longer and be faster in the absolute terms for weakly decaying correlations as compared with the short-range correlations. Residence time distributions in a finite spatial domain are of a generalized log-normal type and are reminiscent also of a stretched exponential distribution. They can be easily confused for power-law distributions in view of the observed weak ergodicity breaking. This suggests a revision of some experimental data and their interpretation.

5.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495645

RESUMO

[-15]Magnetic nanoparticles are met across many biological species ranging from magnetosensitive bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy of such naturally occurring single-domain magnetic nanoparticles can reach up to 10-20 room k B T in the magnetic field of the Earth, which naturally led to supposition that they can serve as sensory elements in various animals. This work explores within a stochastic modeling framework a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living cells and typical sizes of nanoparticles possibly involved.

6.
Phys Chem Chem Phys ; 19(4): 3056-3066, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28079204

RESUMO

Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.

7.
Phys Biol ; 12(1): 016013, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635368

RESUMO

Here we generalize our previous model of molecular motors trafficking subdiffusing cargos in viscoelastic cytosol by (i) including mechano-chemical coupling between cyclic conformational fluctuations of the motor protein driven by the reaction of ATP hydrolysis and its translational motion within the simplest two-state model of hand-over-hand motion of kinesin, and also (ii) by taking into account the anharmonicity of the tether between the motor and the cargo (its maximally possible extension length). It is shown that the major earlier results such as occurrence of normal versus anomalous transport depending on the amplitude of binding potential, cargo size and the motor turnover frequency not only survive in this more realistic model, but the results also look very similar for the correspondingly adjusted parameters. However, this more realistic model displays a substantially larger thermodynamic efficiency due to a bidirectional mechano-chemical coupling. For realistic parameters, the maximal thermodynamic efficiency can transiently be about 50% as observed for kinesins, and even larger, surprisingly also in a novel strongly anomalous (sub)transport regime, where the motor enzymatic turnovers become also anomalously slow and cannot be characterized by a turnover rate. Here anomalously slow dynamics of the cargo enforces anomalously slow cyclic kinetics of the motor protein.


Assuntos
Cinesinas/metabolismo , Transporte Biológico , Difusão , Cinética , Termodinâmica
8.
Phys Rev Lett ; 123(23): 238902, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868495
9.
Phys Rev Lett ; 113(10): 100601, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238342

RESUMO

Normal diffusion in corrugated potentials with spatially uncorrelated Gaussian energy disorder famously explains the origin of non-Arrhenius exp[-σ2/(kBT2)] temperature dependence in disordered systems. Here we show that unbiased diffusion remains asymptotically normal also in the presence of spatial correlations decaying to zero. However, because of a temporal lack of self-averaging, transient subdiffusion emerges on the mesoscale, and it can readily reach macroscale even for moderately strong disorder fluctuations of σ∼4-5kT. Because of its nonergodic origin, such subdiffusion exhibits a large scatter in single-trajectory averages. However, at odds with intuition, it occurs essentially faster than one expects from the normal diffusion in the absence of correlations. We apply these results to diffusion of regulatory proteins on DNA molecules and predict that such diffusion should be anomalous, but much faster than earlier expected on a typical length of genes for a realistic energy disorder of several room kBT, or merely 0.05-0.075 eV.


Assuntos
DNA/química , Modelos Químicos , Proteínas/química , Difusão , Termodinâmica
10.
Phys Chem Chem Phys ; 16(31): 16524-35, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24985765

RESUMO

The discovery of anomalous diffusion of larger biopolymers and submicron tracers such as endogenous granules, organelles, or virus capsids in living cells, attributed to the viscoelastic nature of the cytoplasm, provokes the question whether this complex environment equally impacts the active intracellular transport of submicron cargos by molecular motors such as kinesins: does the passive anomalous diffusion of free cargo always imply its anomalously slow active transport by motors, the mean transport distance along microtubule growing sublinearly rather than linearly in time? Here we analyze this question within the widely used two-state Brownian ratchet model of kinesin motors based on the continuous-state diffusion along microtubules driven by a flashing binding potential, where the cargo particle is elastically attached to the motor. Depending on the cargo size, the loading force, the amplitude of the binding potential, the turnover frequency of the molecular motor enzyme, and the linker stiffness we demonstrate that the motor transport may turn out either normal or anomalous, as indeed measured experimentally. We show how a highly efficient normal active transport mediated by motors may emerge despite the passive anomalous diffusion of the cargo, and study the intricate effects of the elastic linker. Under different, well specified conditions the microtubule-based motor transport becomes anomalously slow and thus significantly less efficient.


Assuntos
Citosol/química , Elasticidade , Proteínas Motores Moleculares/fisiologia , Viscosidade , Termodinâmica
11.
Phys Rev E ; 104(3-1): 034125, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654105

RESUMO

Many experimental studies revealed subdiffusion of various nanoparticles in diverse polymer and colloidal solutions, cytosol and plasma membrane of biological cells, which are viscoelastic and, at the same time, highly inhomogeneous randomly fluctuating environments. The observed subdiffusion often combines features of ergodic fractional Brownian motion (reflecting viscoelasticity) and nonergodic jumplike non-Markovian diffusional processes (reflecting disorder). Accordingly, several theories were proposed to explain puzzling experimental findings. Below we show that some of the significant and profound published experimental results are better rationalized within the viscoelastic subdiffusion approach in random environments, which is based on generalized Langevin dynamics in random potentials, than some earlier proposed theories.

12.
Phys Rev E ; 102(1-1): 012139, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794961

RESUMO

Hydrodynamic memory force or Basset force has been known since the 19th century. Its influence on Brownian motion remains, however, mostly unexplored. Here we investigate its role in nonlinear transport and diffusion within a paradigmatic model of tilted washboard potential. In this model, a giant enhancement of driven diffusion over its potential-free limit [Phys. Rev. Lett. 87, 010602 (2001)PRLTAO0031-900710.1103/PhysRevLett.87.010602] presents a well-established paradoxical phenomenon. In the overdamped limit, it occurs at a critical tilt of vanishing potential barriers. However, for weak damping, it takes place surprisingly at another critical tilt, where the potential barriers are clearly expressed. Recently we showed [Phys. Rev. Lett. 123, 180603 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.180603] that Basset force could make such a diffusion enhancement enormously large. In this paper, we discover that even for moderately strong damping, where the overdamped theory works very well when the memory effects are negligible, substantial hydrodynamic memory unexpectedly makes a strong impact. First, the diffusion boost occurs at nonvanishing potential barriers and can be orders of magnitude larger. Second, transient anomalous diffusion regimes emerge over many time decades and potential periods. Third, particles' mobility can also be dramatically enhanced, and a long transient supertransport regime emerges.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011904, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19257066

RESUMO

We consider noise-assisted spike propagation in myelinated axons within a multicompartment stochastic Hodgkin-Huxley model. The noise originates from a finite number of ion channels in each node of Ranvier. For the subthreshold internodal electric coupling, we show that (i) intrinsic noise removes the sharply defined threshold for spike propagation from node to node and (ii) there exists an optimum number of ion channels which allows for the most efficient signal propagation and it corresponds to the actual physiological values.


Assuntos
Modelos Biológicos , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Axônios/metabolismo , Compartimento Celular , Canais Iônicos/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/citologia , Processos Estocásticos
14.
Biosystems ; 177: 56-65, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30419266

RESUMO

Multiple experiments show that various submicron particles such as magnetosomes, RNA messengers, viruses, and even much smaller nanoparticles such as globular proteins diffuse anomalously slow in viscoelastic cytosol of living cells. Hence, their sufficiently fast directional transport by molecular motors such as kinesins is crucial for the cell operation. It has been shown recently that the traditional flashing Brownian ratchet models of molecular motors are capable to describe both normal and anomalous transport of such subdiffusing cargos by molecular motors with a very high efficiency. This work elucidates further an important role of mechanochemical coupling in such an anomalous transport. It shows a natural emergence of a perfect subdiffusive ratchet regime due to allosteric effects, where the random rotations of a "catalytic wheel" at the heart of the motor operation become perfectly synchronized with the random stepping of a heavily loaded motor, so that only one ATP molecule is consumed on average at each motor step along microtubule. However, the number of rotations made by the catalytic engine and the traveling distance both scale sublinearly in time. Nevertheless, this anomalous transport can be very fast in absolute terms.


Assuntos
Simulação por Computador , Citosol/metabolismo , Substâncias Macromoleculares/metabolismo , Proteínas Motores Moleculares/metabolismo , Substâncias Viscoelásticas/química , Transporte Biológico , Difusão , Cadeias de Markov , Modelos Teóricos , Viscosidade
15.
Phys Rev E ; 99(5-1): 052136, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212539

RESUMO

The dissipative curve-crossing problem provides a paradigm for electron-transfer (ET) processes in condensed media. It establishes the simplest conceptual test bed to study the influence of the medium's dynamics on ET kinetics both on the ensemble level, and on the level of single particles. Single electron description is particularly important for nanoscaled systems like proteins, or molecular wires. Especially insightful is this framework in the semiclassical limit, where the environment can be treated classically, and an exact analytical treatment becomes feasible. Slow medium's dynamics is capable of enslaving ET and bringing it on the ensemble level from a quantum regime of nonadiabatic tunneling to the classical adiabatic regime, where electrons follow the nuclei rearrangements. This classical adiabatic textbook picture contradicts, however, in a very spectacular fashion to the statistics of single electron transitions, even in the Debye, memoryless media, also named Ohmic in the parlance of the famed spin-boson model. On the single particle level, ET always remains quantum, and this was named a quantum breaking of ergodicity in the adiabatic ET regime. What happens in the case of subdiffusive, fractional, or sub-Ohmic medium's dynamics, which is featured by power-law decaying dynamical memory effects typical, e.g., for protein macromolecules, and other viscoelastic media? Such a memory is vividly manifested by anomalous Cole-Cole dielectric response in such media. We address this question based both on accurate numerics and analytical theory. The ensemble theory remarkably agrees with the numerical dynamics of electronic populations, revealing a power-law relaxation tail even in a profoundly nonadiabatic electron transfer regime. In other words, ET in such media should typically display fractional kinetics. However, a profound difference with the numerically accurate results occurs for the distribution of residence times in the electronic states, both on the ensemble level and the level of single trajectories. Ergodicity is broken dynamically even in a more spectacular way than in the memoryless case. Our results question the applicability of all the existing and widely accepted ensemble theories of electron transfer in fractional, sub-Ohmic environments, on the level of single molecules, and provide a real challenge to face, both for theorists and experimentalists.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 040102, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17994921

RESUMO

It is shown that all the known experimental (quasi)stationary dielectric response functions of glassy media can be derived from a standard generalized Langevin description of overdamped torsional dipole oscillators in trapping potentials with random orientations under some minimal assumptions. The non-Markovian theory obeys the fluctuation-dissipation theorem and the Onsager regression theorem. Moreover, it displays no aging on the time scale of the dielectric response, all in assumption of local thermal (quasi)equilibrium. Aging might come from jumping among metastable traps. It occurs on a quite different time scale which is not related to the principal dielectric response. We put the old phenomenological theory of Cole and Cole, Davidson and Cole, and others on a firm basis within a stochastic, thermodynamically consistent approach.

17.
Phys Rev E ; 96(5-1): 052134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347675

RESUMO

Logarithmic or Sinai-type subdiffusion is usually associated with random force disorder and nonstationary potential fluctuations whose root-mean-squared amplitude grows with distance. We show here that extremely persistent, macroscopic logarithmic diffusion also universally emerges at sufficiently low temperatures in stationary Gaussian random potentials with spatially decaying correlations, known to exist in a broad range of physical systems. Combining results from extensive simulations with a scaling approach we elucidate the physical mechanism of this unusual subdiffusion. In particular, we explain why with growing temperature and/or time a first crossover occurs to standard, power-law subdiffusion, with a time-dependent power-law exponent, and then a second crossover occurs to normal diffusion with a disorder-renormalized diffusion coefficient. Interestingly, the initial, nominally ultraslow diffusion turns out to be much faster than the universal de Gennes-Bässler-Zwanzig limit of the renormalized normal diffusion, which realistically cannot be attained at sufficiently low temperatures and/or for strong disorder. The ultraslow diffusion is also shown to be nonergodic and it displays a local bias phenomenon. Our simple scaling theory not only explains our numerical findings but qualitatively also has a predictive character.

18.
Beilstein J Nanotechnol ; 7: 328-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335728

RESUMO

The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation-dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 1): 061906, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16089764

RESUMO

Stochastic resonance in single voltage-dependent ion channels is investigated within a three-state non-Markovian modeling of the ion channel conformational dynamics. In contrast to a two-state description one assumes the presence of an additional closed state for the ion channel which mimics the manifold of voltage-independent closed subconformations (inactivated "state"). The conformational transition into the open state occurs through a domain of voltage-dependent closed subconformations (closed "state"). At distinct variance with the standard two-state and also the three-state Markovian approach, the inactivated state is characterized by a broad, nonexponential probability distribution of corresponding residence times. The linear response to a periodic voltage signal is determined for arbitrary distributions of the channel's recovery times. Analytical results are obtained for the spectral amplification of the applied signal and the corresponding signal-to-noise ratio. Alternatively, these results are also derived by use of a corresponding two-state non-Markovian theory which is based on driven integral renewal equations [I. Goychuk and P. Hänggi, Phys. Rev. E 69, 021104 (2004)]. The non-Markovian features of stochastic resonance are studied for a power law distribution of the residence time intervals in the inactivated state which exhibits a large variance. A comparison with the case of biexponentially distributed residence times possessing the same mean value, i.e., the simplest non-Markovian two-state description, is also presented.


Assuntos
Membrana Celular/fisiologia , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Cadeias de Markov , Potenciais da Membrana/fisiologia , Modelos Estatísticos , Conformação Molecular , Processos Estocásticos
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(1 Pt 1): 011101, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15697574

RESUMO

We investigate the role of noise in the phenomenon of stochastic synchronization of switching events in a rocked, overdamped bistable potential driven by white Gaussian noise, the archetype description of stochastic resonance. We present an approach to the stochastic counting process of noise-induced switching events: starting from the Markovian dynamics of the nonstationary, continuous particle dynamics, one finds upon contraction onto two states a non-Markovian renewal dynamics. A proper definition of an output discrete phase is given, and the time rate of change of its noise average determines the corresponding output frequency. The phenomenon of noise-assisted phase synchronization is investigated in terms of an effective, instantaneous phase diffusion. The theory is applied to rectangular-shaped rocking signals versus increasing input-noise strengths. In this case, for an appropriate choice of the parameter values, the system exhibits a noise-induced frequency locking accompanied by a very pronounced suppression of the phase diffusion of the output signal. Precise numerical simulations corroborate very favorably our analytical results. The novel theoretical findings are also compared with prior ones.


Assuntos
Relógios Biológicos/fisiologia , Retroalimentação/fisiologia , Modelos Neurológicos , Modelos Estatísticos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processos Estocásticos , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Humanos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA