Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(5): 057201, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605763

RESUMO

The concept of space-time crystals (STC), i.e., translational symmetry breaking in time and space, was recently proposed and experimentally demonstrated for quantum systems. Here, we transfer this concept to magnons and experimentally demonstrate a driven STC at room temperature. The STC is realized by strong homogeneous microwave pumping of a micron-sized permalloy (Py) stripe and is directly imaged by scanning transmission x-ray microscopy (STXM). For a fundamental understanding of the formation of the STC, micromagnetic simulations are carefully adapted to model the experimental findings. Beyond the mere generation of a STC, we observe the formation of a magnonic band structure due to back folding of modes at the STC's Brillouin zone boundaries. We show interactions of magnons with the STC that appear as lattice scattering, which results in the generation of ultrashort spin waves (SW) down to 100-nm wavelengths that cannot be described by classical dispersion relations for linear SW excitation. We expect that room-temperature STCs will be useful to investigate nonlinear wave physics, as they can be easily generated and manipulated to control their spatial and temporal band structures.

2.
Phys Rev Lett ; 127(21): 217201, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860082

RESUMO

A three-dimensional singular point that consists of two oppositely aligned emergent monopoles is identified in continuous CoTb thin films, as confirmed by complementary techniques of resonant elastic x-ray scattering, Lorentz transmission electron microscopy, and scanning transmission x-ray microscopy. This new type of topological defect can be regarded as a superposition of an emergent magnetic monopole and an antimonopole, around which the source and drain of the magnetic flux overlap in space. We experimentally prove that the observed spin twist seen in Lorentz transmission electron microscopy reveals the cross section of the superimposed three-dimensional structure, providing a straightforward strategy for the observation of magnetic singularities. Such a quasiparticle provides an excellent platform for studying the rich physics of emergent electromagnetism.

3.
Nano Lett ; 20(10): 7281-7286, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32830984

RESUMO

On-chip signal processing at microwave frequencies is key for modern mobile communication. When one aims at small footprints, low power consumption, reprogrammable filters, and delay lines, magnons in low-damping ferrimagnets offer great promise. Ferromagnetic grating couplers have been reported to be specifically useful as microwave-to-magnon transducers. However, their interconversion efficiency is unknown and real-space measurements of the emitted magnon wavelengths have not yet been accomplished. Here, we image with subwavelength spatial resolution the magnon emission process into ferrimagnetic yttrium iron garnet (YIG) at frequencies up to 8 GHz. We evidence propagating magnons of a wavelength of 98.7 nm underneath the gratings, which enter the YIG without a phase jump. Counterintuitively, the magnons exhibit an even increased amplitude in YIG, which is unexpected and due to a further wavelength conversion process. Our results are of key importance for magnonic components, which efficiently control microwave signals on the nanoscale.

4.
Phys Rev Lett ; 120(21): 217204, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883139

RESUMO

Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

5.
Nanotechnology ; 26(22): 225203, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25969389

RESUMO

Investigations of geometric frustrations in magnetic antidot lattices have led to the observation of interesting phenomena like spin-ice and magnetic monopoles. By using highly focused magneto-optical Kerr effect measurements and x-ray microscopy with magnetic contrast we deduce that geometrical frustration in these nanostructured thin film systems also leads to an out-of-plane magnetization from a purely in-plane applied magnetic field. For certain orientations of the antidot lattice, formation of perpendicular magnetic domains has been found with a size of several µm that may be used for an in-plane/out-of-plane transducer.

6.
Nanotechnology ; 24(46): 465709, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24172909

RESUMO

We study the reversal mechanisms in a self-assembled, hexagonally ordered Fe antidot array with a period of 200 nm and an antidot diameter of 100 nm which was prepared by polystyrene nanosphere lithography. Direction-dependent information in such a self-assembled sample is obtained by measuring the anisotropic magnetoresistance (AMR) through constrictions processed by focused ion beam milling in nearest neighbor and next nearest neighbor directions. We show that such an originally integral method can be used to investigate the strong in-plane anisotropy introduced by the antidot lattice. The easy and hard axis reversal mechanisms and corresponding AMR signals are modeled by micromagnetic simulations. Additional in-field magnetic force microscopy studies allow the correlation of microscopic switching to features in the integral AMR. We find that the easy axis of magnetization is connected to a distinct periodic magnetic domain pattern, which can be observed during the whole magnetization reversal. While this process is driven by nucleation and propagation of reversed domains, the hard axis reversal is characterized by a (stepwise) rotation of the magnetization via the antidot lattice' easy axes.

7.
Struct Dyn ; 10(2): 024301, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970496

RESUMO

We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.

8.
Rev Sci Instrum ; 93(3): 034704, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364984

RESUMO

While the frequencies accessible by signal generators steadily rise, the synthesization of complex and arbitrary waveforms with high frequency components remains challenging, especially when restricted by an external reference clock. In this article, we present a comprehensive software package combined with state-of-the-art hardware as a solution for the generation of highly sampled, arbitrary radio frequency waveforms. The software can be used to conduct both synchronous and heterodyne pump-probe experiments due to a variety of different synchronization modules. While both kinds of modules allow for standard waveforms, such as sines, pulses, and bursts, as well as any arbitrary signal, the heterodyne modules additionally are not restricted by the reference clock frequency. Both the output and the synchronization module can be adapted to support additional measurement devices. Due to the modular software structure, individual classes can be exchanged while maintaining all functionalities. The software provides a user friendly graphical interface that allows us to compose, save, and load complex arbitrary waveforms within only a few steps. The frequency selectivity provided by the software-hardware combination allows us to directly target specific excitation states of physical systems. Conducting a heterodyne scanning transmission x-ray microscopy experiment, we are able to demonstrate the capabilities of the software when paired with a high sample rate arbitrary waveform generator. The heterodyne synchronization modules allow for unlimited flexibility leveraging arbitrary waveform generation to their full power. By solving the challenges of synthesizing highly complex electromagnetic waves, the software enables a large variety of experiments to be performed more conveniently.

9.
Nat Commun ; 13(1): 2462, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513369

RESUMO

Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.

10.
Nat Commun ; 13(1): 1629, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347132

RESUMO

Terahertz (THz) spin dynamics and vanishing stray field make antiferromagnetic (AFM) materials the most promising candidate for the next-generation magnetic memory technology with revolutionary storage density and writing speed. However, owing to the extremely large exchange energy barriers, energy-efficient manipulation has been a fundamental challenge in AFM systems. Here, we report an electrical writing of antiferromagnetic orders through a record-low current density on the order of 106 A cm-2 facilitated by the unique AFM-ferromagnetic (FM) phase transition in FeRh. By introducing a transient FM state via current-induced Joule heating, the spin-orbit torque can switch the AFM order parameter by 90° with a reduced writing current density similar to ordinary FM materials. This mechanism is further verified by measuring the temperature and magnetic bias field dependences, where the X-ray magnetic linear dichroism (XMLD) results confirm the AFM switching besides the electrical transport measurement. Our findings demonstrate the exciting possibility of writing operations in AFM-based devices with a lower current density, opening a new pathway towards pure AFM memory applications.

11.
Nat Commun ; 13(1): 4807, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974009

RESUMO

Magnetic skyrmions are topological spin textures that hold great promise as nanoscale information carriers in non-volatile memory and logic devices. While room-temperature magnetic skyrmions and their current-induced motion were recently demonstrated, the stray field resulting from their finite magnetisation and their topological charge limit their minimum size and reliable motion. Antiferromagnetic skyrmions allow to lift these limitations owing to their vanishing magnetisation and net zero topological charge, promising ultra-small and ultra-fast skyrmions. Here, we report on the observation of isolated skyrmions in compensated synthetic antiferromagnets at zero field and room temperature using X-ray magnetic microscopy. Micromagnetic simulations and an analytical model confirm the chiral antiferromagnetic nature of these skyrmions and allow the identification of the physical mechanisms controlling their size and stability. Finally, we demonstrate the nucleation of synthetic antiferromagnetic skyrmions via local current injection and ultra-fast laser excitation.

12.
Nat Commun ; 12(1): 1989, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790290

RESUMO

The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.

13.
Sci Rep ; 10(1): 18146, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097751

RESUMO

For understanding magnonic materials the fundamental characterization of their frequency response is essential. However, determining full dispersion relations and real space wavelength measurements are challenging and time-consuming tasks. We present an approach for spin wave excitation by a modified Sinc pulse, which combines a cosine signal with a conventional Sinc function. The resulting adjustable frequency bands lead to a broadband spin wave excitation at uniform power levels. Subsequently, time resolved scanning transmission X-ray microscopy is used for direct imaging of all excited spin waves in real space. To demonstrate the capabilities of this approach, a modified Sinc excitation of an ultra-thin yttrium-iron-garnet film is shown that simultaneously reveals phase, amplitude, and k-space information from a single measurement. Consequently, this approach allows a fast and thorough access to the full dispersion relation including spatial maps of the individual spin wave modes, enabling complete characterization of magnonic materials down to the nanoscale in real and reciprocal space.

14.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355122

RESUMO

Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in hybrid spintronic devices with much lower operation power than conventional charge-based electronics. Their wave nature can be exploited in majority gates by using interference for computation. However, a scalable spin-wave majority gate that can be cointegrated alongside conventional electronics is still lacking. Here, we demonstrate a submicrometer inline spin-wave majority gate with fan-out. Time-resolved imaging of the magnetization dynamics by scanning transmission x-ray microscopy illustrates the device operation. All-electrical spin-wave spectroscopy further demonstrates majority gates with submicrometer dimensions, reconfigurable input and output ports, and frequency-division multiplexing. Challenges for hybrid spintronic computing systems based on spin-wave majority gates are discussed.

15.
ACS Nano ; 14(12): 17184-17193, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33253544

RESUMO

Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge. Here, we report on a method to measure the full spin wave isofrequency contour for a given frequency and field. A single antidot within a continuous thin film excites wave vectors along all directions within a single excitation geometry. Varying structural parameters or introducing Dzyaloshinskii-Moriya interaction allows the manipulation and control of the isofrequency contour, which is desirable for the fabrication of future magnonic devices. Additionally, the same antidot structure is utilized as a multipurpose spin wave device. Depending on its position with respect to the microstrip antenna, it can either be an emitter for short spin waves or a directional converter for incoming plane waves. Using simulations we show that such a converter structure is capable of generating a coherent spin wave beam. By introducing a short wavelength spin wave beam into existing magnonic gate logic, it is conceivable to reduce the size of devices to the micrometer scale. This method gives access to short wavelength spin waves to a broad range of magnonic devices without the need for refined sample preparation techniques. The presented toolbox for spin wave manipulation, emission, and conversion is a crucial step for spin wave optics and gate logic.

16.
Nanoscale ; 12(33): 17238-17244, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558843

RESUMO

As a potential route towards beyond CMOS computing magnonic waveguides show outstanding properties regarding fundamental wave physics and data transmission. Here, we use time resolved scanning transmission X-ray microscopy to directly observe spin waves in magnonic permalloy waveguides with nanoscale resolution. Additionally, we demonstrate an approach for k-vector selective imaging to deconvolute overlapping modes in real space measurements. Thereby, we observe efficient excitation of symmetric and antisymmetric modes. The profiles of higher order modes that arise from sub-micron confinement are precisely mapped out and compared to analytical models. Thus, we lay a basis for the design of multimode spin wave transmission systems and demonstrate a general technique for k-specific microscopy that can also be used beyond the field of magnonics.

17.
Adv Mater ; 32(34): e2003380, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666575

RESUMO

Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next-generation energy-efficient and high-density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii-Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin-orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small-size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element-resolved scanning transmission X-ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line-scan spin profile of the single skyrmion shows a Néel-type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI-based heterostructures with great promise for low-energy spintronic devices.

18.
Nat Commun ; 11(1): 949, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075968

RESUMO

Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

19.
Adv Mater ; 31(14): e1807683, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30735264

RESUMO

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real-space spin configuration. Here, two advanced X-ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO]n multilayers. First, by using ptychography, a high-resolution diffraction imaging technique, the 2D out-of-plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X-ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth-dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole-dipole interactions together with the external magnetic field play an important role in stabilizing sub-100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X-ray-based approach opens the door for in-depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.

20.
Beilstein J Nanotechnol ; 7: 733-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335762

RESUMO

We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA