Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176652

RESUMO

The F1FO-ATP synthase engine is essential for viability and growth of nontuberculous mycobacteria (NTM) by providing the biological energy ATP and keeping ATP homeostasis under hypoxic stress conditions. Here, we report the discovery of the diarylquinoline TBAJ-5307 as a broad spectrum anti-NTM inhibitor, targeting the FO domain of the engine and preventing rotation and proton translocation. TBAJ-5307 is active at low nanomolar concentrations against fast- and slow-growing NTM as well as clinical isolates by depleting intrabacterial ATP. As demonstrated for the fast grower Mycobacterium abscessus, the compound is potent in vitro and in vivo, without inducing toxicity. Combining TBAJ-5307 with anti-NTM antibiotics or the oral tebipenem-avibactam pair showed attractive potentiation. Furthermore, the TBAJ-5307-tebipenem-avibactam cocktail kills the pathogen, suggesting a novel oral combination for the treatment of NTM lung infections.


Assuntos
Antibacterianos , Diarilquinolinas , Inibidores Enzimáticos , Infecções por Mycobacterium não Tuberculosas , Micobactérias não Tuberculosas , Humanos , Trifosfato de Adenosina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Carbapenêmicos , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Diarilquinolinas/farmacologia
2.
Biochem Biophys Res Commun ; 690: 149249, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000294

RESUMO

The anti-tuberculosis therapeutic bedaquiline (BDQ) is used against Mycobacterium abscessus. In M. abscessus BDQ is only bacteriostatic and less potent compared to M. tuberculosis or M. smegmatis. Here we demonstrate its reduced ATP synthesis inhibition against M. abscessus inside-out vesicles, including the F1FO-ATP synthase. Molecular dynamics simulations and binding free energy calculations highlight the differences in drug-binding of the M. abscessus and M. smegmatis FO-domain at the lagging site, where the drug deploys its mechanistic action, inhibiting ATP synthesis. These data pave the way for improved anti-M. abscessus BDQ analogs.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Diarilquinolinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase/metabolismo , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
3.
FASEB J ; 37(7): e23040, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37318822

RESUMO

The Acinetobacter baumannii F1 FO -ATP synthase (α3 :ß3 :γ:δ:ε:a:b2 :c10 ), which is essential for this strictly respiratory opportunistic human pathogen, is incapable of ATP-driven proton translocation due to its latent ATPase activity. Here, we generated and purified the first recombinant A. baumannii F1 -ATPase (AbF1 -ATPase) composed of subunits α3 :ß3 :γ:ε, showing latent ATP hydrolysis. A 3.0 Å cryo-electron microscopy structure visualizes the architecture and regulatory element of this enzyme, in which the C-terminal domain of subunit ε (Abε) is present in an extended position. An ε-free AbF1 -ɑßγ complex generated showed a 21.5-fold ATP hydrolysis increase, demonstrating that Abε is the major regulator of AbF1 -ATPase's latent ATP hydrolysis. The recombinant system enabled mutational studies of single amino acid substitutions within Abε or its interacting subunits ß and γ, respectively, as well as C-terminal truncated mutants of Abε, providing a detailed picture of Abε's main element for the self-inhibition mechanism of ATP hydrolysis. Using a heterologous expression system, the importance of Abε's C-terminus in ATP synthesis of inverted membrane vesicles, including AbF1 FO -ATP synthases, has been explored. In addition, we are presenting the first NMR solution structure of the compact form of Abε, revealing interaction of its N-terminal ß-barrel and C-terminal ɑ-hairpin domain. A double mutant of Abε highlights critical residues for Abε's domain-domain formation which is important also for AbF1 -ATPase's stability. Abε does not bind MgATP, which is described to regulate the up and down movements in other bacterial counterparts. The data are compared to regulatory elements of F1 -ATPases in bacteria, chloroplasts, and mitochondria to prevent wasting of ATP.


Assuntos
Acinetobacter baumannii , ATPases Translocadoras de Prótons , Humanos , ATPases Translocadoras de Prótons/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Hidrólise , Microscopia Crioeletrônica , Sequência de Aminoácidos , Bactérias/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33729990

RESUMO

Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Celulose/metabolismo , Glucosiltransferases/química , Uridina Difosfato Glucose/química , Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Manganês/química , Manganês/metabolismo , Mutação , Multimerização Proteica , Uridina Difosfato Glucose/metabolismo
5.
Antimicrob Agents Chemother ; 67(6): e0153122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158740

RESUMO

The mycobacterial cytochrome bcc:aa3 complex deserves the name "supercomplex" since it combines three cytochrome oxidases-cytochrome bc, cytochrome c, and cytochrome aa3-into one supramolecular machine and performs electron transfer for the reduction of oxygen to water and proton transport to generate the proton motive force for ATP synthesis. Thus, the bcc:aa3 complex represents a valid drug target for Mycobacterium tuberculosis infections. The production and purification of an entire M. tuberculosis cytochrome bcc:aa3 are fundamental for biochemical and structural characterization of this supercomplex, paving the way for new inhibitor targets and molecules. Here, we produced and purified the entire and active M. tuberculosis cyt-bcc:aa3 oxidase, as demonstrated by the different heme spectra and an oxygen consumption assay. The resolved M. tuberculosis cyt-bcc:aa3 cryo-electron microscopy structure reveals a dimer with its functional domains involved in electron, proton, oxygen transfer, and oxygen reduction. The structure shows the two cytochrome cIcII head domains of the dimer, the counterpart of the soluble mitochondrial cytochrome c, in a so-called "closed state," in which electrons are translocated from the bcc to the aa3 domain. The structural and mechanistic insights provided the basis for a virtual screening campaign that identified a potent M. tuberculosis cyt-bcc:aa3 inhibitor, cytMycc1. cytMycc1 targets the mycobacterium-specific α3-helix of cytochrome cI and interferes with oxygen consumption by interrupting electron translocation via the cIcII head. The successful identification of a new cyt-bcc:aa3 inhibitor demonstrates the potential of a structure-mechanism-based approach for novel compound development.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Microscopia Crioeletrônica , Citocromos c , Prótons , Oxigênio
6.
Biochem Biophys Res Commun ; 671: 140-145, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37302287

RESUMO

The cases of lung disease caused by non-tuberculous mycobacterium Mycobacterium abscessus (Mab) are increasing and not reliably curable. Repurposing of anti-tuberculosis inhibitors brought the oxidative phosphorylation pathway with its final product ATP, formed by the essential F1FO-ATP synthase (subunits α3:ß3:γ:δ:ε:a:b:b':c9), into focus as an attractive inhibitor target against Mab. Because of the pharmacological attractiveness of this enzyme, we generated and purified a recombinant and enzymatically active Mab F1-ATPase complex, including subunits α3:ß3:γ:δ:ε (MabF1-αßγδε) to achieve mechanistic, regulatory, and structural insights. The high purity of the complex enabled the first cryo-electron microscopy structure determination of the Mab F1-ATPase complex to 7.3 Å resolution. The enzyme showed low ATP hydrolysis activity, which was stimulated by trypsin treatment. No effect was observed in the presence of the detergent lauryldimethylamine oxide.


Assuntos
Mycobacterium abscessus , Tuberculose , Humanos , Microscopia Crioeletrônica , Sequência de Aminoácidos , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Antimicrob Agents Chemother ; 66(5): e0001822, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35481752

RESUMO

New drug targets and molecules with bactericidal activity are needed against the respiratory mycobacterial pathogen Mycobacterium abscessus. Employing a lead repurposing strategy, the antituberculosis compound GaMF1 was tested against M. abscessus. Whole-cell and ATP synthesis assays demonstrated that GaMF1 inhibits growth and kills M. abscessus by targeting the F-ATP synthase. GaMF1's anti-M. abscessus activity increased in combination with clofazimine, rifabutin, or amikacin. The study expands the repertoire of anti-M. abscessus compounds targeting oxidative phosphorylation.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Tuberculose , Trifosfato de Adenosina , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia
8.
Antimicrob Agents Chemother ; 66(12): e0105622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445139

RESUMO

The F1FO-ATP synthase is required for the viability of tuberculosis (TB) and nontuberculous mycobacteria (NTM) and has been validated as a drug target. Here, we present the cryo-EM structures of the Mycobacterium smegmatis F1-ATPase and the F1FO-ATP synthase with different nucleotide occupation within the catalytic sites and visualize critical elements for latent ATP hydrolysis and efficient ATP synthesis. Mutational studies reveal that the extended C-terminal domain (αCTD) of subunit α is the main element for the self-inhibition mechanism of ATP hydrolysis for TB and NTM bacteria. Rotational studies indicate that the transition between the inhibition state by the αCTD and the active state is a rapid process. We demonstrate that the unique mycobacterial γ-loop and subunit δ are critical elements required for ATP formation. The data underline that these mycobacterium-specific elements of α, γ, and δ are attractive targets, providing a platform for the discovery of species-specific inhibitors.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Tuberculose , Humanos , Micobactérias não Tuberculosas , Hidrólise , Trifosfato de Adenosina
9.
Transfusion ; 62(12): 2621-2630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181447

RESUMO

BACKGROUND: OctaplasLG is a frozen solvent/detergent-treated plasma product used for treating complex coagulation factor deficiencies or as substitution therapy in emergency situations where specific factor concentrates are not available. A new freeze-dried (also known as lyophilized) form of OctaplasLG, referred as OctaplasLG Lyo (Octapharma AG, Switzerland) offers rapid reconstitution and more flexible storage conditions, improving logistics and utilization. This study compared the biochemical quality of OctaplasLG Lyo with OctaplasLG and single-donor fresh frozen plasma units. STUDY DESIGN AND METHODS: Three batches of OctaplasLG Lyo, manufactured for production process qualification, and 12 batches of OctaplasLG were provided by Octapharma AB (Sweden). Twelve units of fresh frozen plasma were collected by the local FDA-licensed blood provider. All plasma samples were assessed for global coagulation parameters, coagulation factors and protease inhibitors, activation markers of coagulation and fibrinolysis, and important plasma proteins. Quality control assays were conducted in accordance with European Pharmacopeia requirements. RESULTS: Frozen and freeze-dried OctaplasLG demonstrated comparable quality profiles upon thawing or reconstitution. All coagulation factor and protease inhibitor activity parameters were in line with levels mandated by the European Pharmacopeia. Fresh frozen plasma units showed comparable coagulation factor activities, with higher protein S and plasmin inhibitor levels than the OctaplasLG products. Fresh frozen plasma parameters showed high lot-to-lot variations. DISCUSSION: The two pharmaceutical forms of OctaplasLG (frozen and freeze-dried) have comparable biochemical quality. Key features of OctaplasLG Lyo are rapid reconstitution time and storage flexibility, which may improve logistics and utilization, and have particular advantages in emergency situations and pre-hospital settings.


Assuntos
Fatores de Coagulação Sanguínea , Plasma , Humanos , Composição de Medicamentos , Solventes , Suécia
10.
Bioorg Med Chem ; 74: 117046, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228522

RESUMO

Tuberculosis (TB) remains a leading cause of infectious disease-related mortality and morbidity. Pyrazinamide (PZA) is a critical component of the first-line TB treatment regimen because of its sterilizing activity against non-replicating Mycobacterium tuberculosis (Mtb), but its mechanism of action has remained enigmatic. PZA is a prodrug converted by pyrazinamidase encoded by pncA within Mtb to the active moiety, pyrazinoic acid (POA) and PZA resistance is caused by loss-of-function mutations to pyrazinamidase. We have recently shown that POA induces targeted protein degradation of the enzyme PanD, a crucial component of the coenzyme A biosynthetic pathway essential in Mtb. Based on the newly identified mechanism of action of POA, along with the crystal structure of PanD bound to POA, we designed several POA analogs using structure for interpretation to improve potency and overcome PZA resistance. We prepared and tested ring and carboxylic acid bioisosteres as well as 3, 5, 6 substitutions on the ring to study the structure activity relationships of the POA scaffold. All the analogs were evaluated for their whole cell antimycobacterial activity, and a few representative molecules were evaluated for their binding affinity, towards PanD, through isothermal titration calorimetry. We report that analogs with ring and carboxylic acid bioisosteres did not significantly enhance the antimicrobial activity, whereas the alkylamino-group substitutions at the 3 and 5 position of POA were found to be up to 5 to 10-fold more potent than POA. Further development and mechanistic analysis of these analogs may lead to a next generation POA analog for treating TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Pirazinamida/farmacologia , Pirazinamida/metabolismo , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Amidoidrolases/metabolismo , Tuberculose/microbiologia , Mutação , Relação Estrutura-Atividade , Ácidos Carboxílicos/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
11.
Mol Divers ; 25(1): 517-524, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31939065

RESUMO

Mycobacteria have shown enormous resilience to survive and persist by remodeling and altering metabolic requirements. Under stringent conditions or exposure to drugs, mycobacteria have adapted to rescue themselves by shutting down their major metabolic activity and elevate certain survival factor levels and efflux pathways to survive and evade the effects of drug treatments. A fundamental feature in this adaptation is the ability of mycobacteria to vary the enzyme composition of the electron transport chain (ETC), which generates the proton motive force for the synthesis of adenosine triphosphate via oxidative phosphorylation. Mycobacteria harbor dehydrogenases to fuel the ETC, and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase (cyt-bcc-aa3) and a bacterial specific cytochrome bd-type menaquinol oxidase (cyt-bd). In this study, we employed homology modeling and structure-based virtual screening studies to target mycobacteria-specific residues anchoring the b558 menaquinol binding region of Mycobacterium tuberculosis cyt-bd oxidase to obtain a focused library. Furthermore, ATP synthesis inhibition assays were carried out. One of the ligands MQL-H2 inhibited both NADH2- and succinate-driven ATP synthesis inhibition of Mycobacterium smegmatis inside-out vesicles in micromolar potency. Similarly, MQL-H2 also inhibited NADH2-driven ATP synthesis in inside-out vesicles of the cytochrome-bcc oxidase deficient M. smegmatis strain. Since neither varying the electron donor substrates nor deletion of the cyt-bcc oxidase, a major source of protons, hindered the inhibitory effects of the MQL-H2, reflecting that MQL-H2 targets the terminal oxidase cytochrome bd oxidase, which was consistent with molecular docking studies. Characterization of novel cytochrome bd oxidase Menaquinol binding domain inhibitor (MQL-H2) using virtual screening and ATP synthesis inhibition assays.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/enzimologia , Naftóis/metabolismo , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Epitopos , Ligantes , Modelos Moleculares , Oxirredução , Homologia Estrutural de Proteína
12.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32988828

RESUMO

Mycobacterial F1Fo-ATP synthases (α3:ß3:γ:δ:ε:a:b:b':c9 ) are incapable of ATP-driven proton translocation due to their latent ATPase activity. This prevents wasting of ATP and altering of the proton motive force, whose dissipation is lethal to mycobacteria. We demonstrate that the mycobacterial C-terminal extension of nucleotide-binding subunit α contributes mainly to the suppression of ATPase activity in the recombinant mycobacterial F1-ATPase. Using C-terminal deletion mutants, the regions responsible for the enzyme's latency were mapped, providing a new compound epitope.


Assuntos
Proteínas de Bactérias , Mycobacterium , Trifosfato de Adenosina , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrólise , Mycobacterium/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-31712198

RESUMO

The diarylquinoline F1FO-ATP synthase inhibitor bedaquiline (BDQ) displays protonophore activity. Thus, uncoupling electron transport from ATP synthesis appears to be a second mechanism of action of this antimycobacterial drug. Here, we show that the new BDQ analogue TBAJ-876 did not retain the parental drug's protonophore activity. Comparative time-kill analyses revealed that both compounds exert the same bactericidal activity. These results suggest that the uncoupler activity is not required for the bactericidal activity of diarylquinolines.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Desacopladores/farmacologia , Trifosfato de Adenosina/biossíntese , Transporte de Elétrons/efeitos dos fármacos , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana , Prótons
14.
Biochem Biophys Res Commun ; 527(2): 518-524, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32423799

RESUMO

The Na+-translocating F1FO ATP synthase from Acetobacterium woodii (AwF-ATP synthase) with a subunit stoichiometry of α3:ß3:γ:δ:ε:a:b2:(c2/3)9:c1 represents an evolutionary path between ATP-synthases and vacuolar ATPases, by containing a heteromeric rotor c-ring, composed of subunits c1, c2 and c3, and an extra loop (γ195-211) within the rotary γ subunit. Here, the recombinant AwF-ATP synthase was subjected to negative stain electron microscopy and single particle analysis. The reference free 2D class averages revealed high flexibility of the enzyme, wherein the F1 and FO domains distinctively bended to adopt multiple conformations. Moreover, both the F1 and FO domains tilted relative to each other to a maximum extent of 28° and 30°, respectively. The first 3D reconstruction of the AwF-ATP synthase was determined which accommodates well the modelled structure of the AwF-ATP synthase as well as the γ195-211-loop. Molecular simulations of the enzyme underlined the bending features and flexibility observed in the electron micrographs, and enabled assessment of the dynamics of the extra γ195-211-loop.


Assuntos
Acetobacterium/enzimologia , Proteínas de Bactérias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Acetobacterium/química , Acetobacterium/ultraestrutura , Proteínas de Bactérias/análise , Imageamento Tridimensional , Microscopia Eletrônica , ATPases Mitocondriais Próton-Translocadoras/análise , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/ultraestrutura
15.
Biochem Biophys Res Commun ; 522(2): 374-380, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761325

RESUMO

The F-ATP synthase is an essential enzyme in mycobacteria, including the pathogenic Mycobacterium tuberculosis. Several new compounds in the TB-drug pipeline target the F-ATP synthase. In light of the importance and pharmacological attractiveness of this novel antibiotic target, tools have to be developed to generate a recombinant mycobacterial F1FO ATP synthase to achieve atomic insight and mutants for mechanistic and regulatory understanding as well as structure-based drug design. Here, we report the first genetically engineered, purified and enzymatically active recombinant M. smegmatis F1FO ATP synthase. The projected 2D- and 3D structures of the recombinant enzyme derived from negatively stained electron micrographs are presented. Furthermore, the first 2D projections from cryo-electron images are revealed, paving the way for an atomic resolution structure determination.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Hidrólise , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , ATPases Translocadoras de Prótons/isolamento & purificação , ATPases Translocadoras de Prótons/ultraestrutura , Proteínas Recombinantes/isolamento & purificação
16.
Proc Natl Acad Sci U S A ; 114(28): 7426-7431, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652330

RESUMO

The recent discovery of small molecules targeting the cytochrome bc1 :aa3 in Mycobacterium tuberculosis triggered interest in the terminal respiratory oxidases for antituberculosis drug development. The mycobacterial cytochrome bc1 :aa3 consists of a menaquinone:cytochrome c reductase (bc1 ) and a cytochrome aa3 -type oxidase. The clinical-stage drug candidate Q203 interferes with the function of the subunit b of the menaquinone:cytochrome c reductase. Despite the affinity of Q203 for the bc1 :aa3 complex, the drug is only bacteriostatic and does not kill drug-tolerant persisters. This raises the possibility that the alternate terminal bd-type oxidase (cytochrome bd oxidase) is capable of maintaining a membrane potential and menaquinol oxidation in the presence of Q203. Here, we show that the electron flow through the cytochrome bd oxidase is sufficient to maintain respiration and ATP synthesis at a level high enough to protect M. tuberculosis from Q203-induced bacterial death. Upon genetic deletion of the cytochrome bd oxidase-encoding genes cydAB, Q203 inhibited mycobacterial respiration completely, became bactericidal, killed drug-tolerant mycobacterial persisters, and rapidly cleared M. tuberculosis infection in vivo. These results indicate a synthetic lethal interaction between the two terminal respiratory oxidases that can be exploited for anti-TB drug development. Our findings should be considered in the clinical development of drugs targeting the cytochrome bc1 :aa3 , as well as for the development of a drug combination targeting oxidative phosphorylation in M. tuberculosis.


Assuntos
Mycobacterium tuberculosis/metabolismo , Oxirredutases/química , Mutações Sintéticas Letais , Trifosfato de Adenosina/química , Animais , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Redutases do Citocromo/metabolismo , Diarilquinolinas/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Deleção de Genes , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais , Infecções por Mycobacterium/microbiologia , Mycobacterium bovis , Mycobacterium tuberculosis/genética , Fosforilação Oxidativa , Oxirredutases/genética , Oxigênio/química , Proteínas de Plantas , Células THP-1
17.
Angew Chem Int Ed Engl ; 59(32): 13295-13304, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32337801

RESUMO

The F1 FO -ATP synthase is required for growth and viability of Mycobacterium tuberculosis and is a validated clinical target. A mycobacterium-specific loop of the enzyme's rotary γ subunit plays a role in the coupling of ATP synthesis within the enzyme complex. We report the discovery of a novel antimycobacterial, termed GaMF1, that targets this γ subunit loop. Biochemical and NMR studies show that GaMF1 inhibits ATP synthase activity by binding to the loop. GaMF1 is bactericidal and is active against multidrug- as well as bedaquiline-resistant strains. Chemistry efforts on the scaffold revealed a dynamic structure activity relationship and delivered analogues with nanomolar potencies. Combining GaMF1 with bedaquiline or novel diarylquinoline analogues showed potentiation without inducing genotoxicity or phenotypic changes in a human embryonic stem cell reporter assay. These results suggest that GaMF1 presents an attractive lead for the discovery of a novel class of anti-tuberculosis F-ATP synthase inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , ATPases Bacterianas Próton-Translocadoras/antagonistas & inibidores , Diarilquinolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Benzamidas/toxicidade , Sinergismo Farmacológico , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Relação Estrutura-Atividade
18.
J Struct Biol ; 207(2): 199-208, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31132404

RESUMO

In contrast to other prokaryotes, the Mycobacterial F1FO ATP synthase (α3:ß3:γ:δ:ε:a:b:b':c9) is essential for growth. The mycobacterial enzyme is also unique as a result of its 111 amino acids extended δ subunit, whose gene is fused to the peripheral stalk subunit b. Recently, the crystallographic structures of the mycobacterial α3:ß3:γ:ε-domain and c subunit ring were resolved. Here, we report the first purification protocol of the intact M. smegmatis F1FO ATP synthase including the F1-domain, the entire membrane-embedded FO sector, and the stator subunits b' and the fused b-δ. This enzyme purification enabled the determination of the first projected 2D- and 3D structure of the intact M. smegmatis F1FO ATP synthase by electron microscopy (EM) and single particle analysis. Expression and purification of the fused mycobacterial b-δ24-446 construct, excluding the membrane-embedded N-terminal amino acids, provided insight into its secondary structure. By combining these data with homology and ab-initio modeling techniques, a model of the mycobacterial peripheral stalk subunits b-δ and b' was generated. Superposition of the 3D M. smegmatis F-ATP synthase EM-structure, the α3:ß3:γ:ε and c-ring, and the derived structural models of the peripheral stalk enabled a clear assignment of all F-ATP synthase subunits, in particular with respect to the unique mycobacterial peripheral stalk subunit b' and the elongated δ fused with subunit b. The arrangement of δ relative to the N-termini of the catalytic α3ß3-headpiece and its potential as a drug target are discussed.


Assuntos
Aminoácidos/química , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Mycobacterium/ultraestrutura , Sequência de Aminoácidos/genética , Aminoácidos/genética , Cristalografia por Raios X , Regulação Enzimológica da Expressão Gênica , Microscopia Eletrônica , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/genética , Modelos Moleculares , Mycobacterium/enzimologia , Domínios Proteicos/genética , Estrutura Secundária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Homologia de Sequência de Aminoácidos
19.
Artigo em Inglês | MEDLINE | ID: mdl-31358589

RESUMO

The antituberculosis drug bedaquiline (BDQ) inhibits Mycobacterium tuberculosis F-ATP synthase by interfering with two subunits. Drug binding to the c subunit stalls the rotation of the c ring, while binding to the ε subunit blocks coupling of c ring rotation to ATP synthesis at the catalytic α3:ß3 headpiece. BDQ is used for the treatment of drug-resistant tuberculosis. However, the drug is highly lipophilic, displays a long terminal half-life, and has a cardiotoxicity liability by causing QT interval prolongation. Recent medicinal chemistry campaigns have resulted in the discovery of 3,5-dialkoxypyridine analogues of BDQ that are less lipophilic, have higher clearance, and display lower cardiotoxic potential. TBAJ-876, which is a new developmental compound of this series, shows attractive antitubercular activity and efficacy in a murine tuberculosis model. Here, we asked whether TBAJ-876 and selected analogues of the compound retain BDQ's mechanism of action. Biochemical assays showed that TBAJ-876 is a potent inhibitor of mycobacterial F-ATP synthase. Selection of spontaneous TBAJ-876-resistant mutants identified missense mutations at BDQ's binding site on the c subunit, suggesting that TBAJ-876 retains BDQ's targeting of the c ring. Susceptibility testing against a strain overexpressing the ε subunit and a strain harboring an engineered mutation in BDQ's ε subunit binding site suggest that TBAJ-876 retains BDQ's activity on the ε subunit. Nuclear magnetic resonance (NMR) titration studies confirmed that TBAJ-876 binds to the ε subunit at BDQ's binding site. We show that TBAJ-876 retains BDQ's antimycobacterial mode of action. The developmental compound inhibits the mycobacterial F-ATP synthase via a dual-subunit mechanism of interfering with the functions of both the enzyme's c and ε subunits.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/genética , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
20.
Curr Top Membr ; 83: 77-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196611

RESUMO

We have previously identified the interaction between mammalian V-ATPase a2-subunit isoform and cytohesin-2 (CTH2) and studied molecular details of binding between these proteins. In particular, we found that six peptides derived from the N-terminal cytosolic domain of a2 subunit (a2N1-402) are involved in interaction with CTH2 (Merkulova, Bakulina, Thaker, Grüber, & Marshansky, 2010). However, the actual 3D binding interface was not determined in that study due to the lack of high-resolution structural information about a-subunits of V-ATPase. Here, using a combination of homology modeling and NMR analysis, we generated the structural model of complete a2N1-402 and uncovered the CTH2-binding interface. First, using the crystal-structure of the bacterial M. rubber Icyt-subunit of A-ATPase as a template (Srinivasan, Vyas, Baker, & Quiocho, 2011), we built a homology model of mammalian a2N1-352 fragment. Next, we combined it with the determined NMR structures of peptides a2N368-395 and a2N386-402 of the C-terminal section of a2N1-402. The complete molecular model of a2N1-402 revealed that six CTH2 interacting peptides are clustered in the distal and proximal lobe sub-domains of a2N1-402. Our data indicate that the proximal lobe sub-domain is the major interacting site with the Sec7 domain of first CTH2 protein, while the distal lobe sub-domain of a2N1-402 interacts with the PH-domain of second CTH2. Indeed, using Sec7/Arf-GEF activity assay we experimentally confirmed our model. The interface formed by peptides a2N1-17 and a2N35-49 is involved in specific interaction with Sec7 domain and regulation of GEF activity. These data are critical for understanding of the cross-talk between V-ATPase and CTH2 as well as for the rational drug design to regulate their function.


Assuntos
Desenho de Fármacos , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Sequência de Aminoácidos , Animais , Bactérias , Sítios de Ligação , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA