Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522888

RESUMO

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mimetismo Molecular/imunologia , Imunidade Vegetal/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Células HeLa , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Fosforilação , Plasmídeos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Quinases/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 296: 100301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476647

RESUMO

ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L. pneumophila have not been well defined. Here, we took a bioinformatic approach to search the Legionella effector repertoire for additional divergent members of the ART superfamily and identified an ART domain in Legionella pneumophila gene0181, which we hereafter refer to as Legionella ADP-Ribosyltransferase 1 (Lart1) (Legionella ART 1). We show that L. pneumophila Lart1 targets a specific class of 120-kDa NAD+-dependent glutamate dehydrogenase (GDH) enzymes found in fungi and protists, including many natural hosts of Legionella. Lart1 targets a conserved arginine residue in the NAD+-binding pocket of GDH, thereby blocking oxidative deamination of glutamate. Therefore, Lart1 could be the first example of a Legionella effector which directly targets a host metabolic enzyme during infection.


Assuntos
ADP Ribose Transferases/química , Proteínas de Bactérias/química , Glutamato Desidrogenase/química , Legionella pneumophila/genética , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Sequência de Aminoácidos , Amoeba/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Desaminação , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Interações Hospedeiro-Patógeno , Cinética , Legionella pneumophila/enzimologia , Legionella pneumophila/patogenicidade , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
3.
Biochem Soc Trans ; 48(4): 1337-1352, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32677675

RESUMO

The protein kinase-like clan/superfamily is a large group of regulatory, signaling and biosynthetic enzymes that were historically regarded as typically eukaryotic proteins, although bacterial members have also been known for a long time. In this review, we explore the diversity of bacterial protein kinase like families, and discuss functional versatility of these enzymes, both the ones acting within the bacterial cell, and those acting within eukaryotic cells as effectors during infection. We focus on novel bacterial kinase-like families discovered in the last five years. A bioinformatics perspective is held here, hence sequence and structure comparison overview is presented, and also a comparison of genomic neighbourhoods of the families. We perform a phylum-level census of the families. Also, we discuss apparent pseudokinases that turned out to perform alternative catalytic functions by repurposing their atypical kinase-like active sites. We also highlight some 'unpopular' kinase-like families that await characterisation.


Assuntos
Bactérias/enzimologia , Proteínas Quinases/metabolismo , Catálise , Biologia Computacional , Conformação Proteica , Proteínas Quinases/química
4.
BMC Res Notes ; 17(1): 50, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365785

RESUMO

OBJECTIVE: The superfamily of protein kinases features a common Protein Kinase-like (PKL) three-dimensional fold. Proteins with PKL structure can also possess enzymatic activities other than protein phosphorylation, such as AMPylation or glutamylation. PKL proteins play a vital role in the world of living organisms, contributing to the survival of pathogenic bacteria inside host cells, as well as being involved in carcinogenesis and neurological diseases in humans. The superfamily of PKL proteins is constantly growing. Therefore, it is crucial to gather new information about PKL families. RESULTS: To this end, the KINtaro database ( http://bioinfo.sggw.edu.pl/kintaro/ ) has been created as a resource for collecting and sharing such information. KINtaro combines protein sequence information and additional annotations for more than 70 PKL families, including 32 families not associated with PKL superfamily in established protein domain databases. KINtaro is searchable by keywords and by protein sequence and provides family descriptions, sequences, sequence alignments, HMM models, 3D structure models, experimental structures with PKL domain annotations and sequence logos with catalytic residue annotations.


Assuntos
Proteínas Quinases , Proteínas , Humanos , Proteínas Quinases/genética , Fosforilação , Sequência de Aminoácidos , Alinhamento de Sequência , Bases de Dados de Proteínas
5.
Methods Enzymol ; 667: 575-610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35525554

RESUMO

Pseudoenzymes resemble active enzymes, but lack key catalytic residues believed to be required for activity. Many pseudoenzymes appear to be inactive in conventional enzyme assays. However, an alternative explanation for their apparent lack of activity is that pseudoenzymes are being assayed for the wrong reaction. We have discovered several new protein kinase-like families which have revealed how different binding orientations of adenosine triphosphate (ATP) and active site residue migration can generate a novel reaction from a common kinase scaffold. These results have exposed the catalytic versatility of the protein kinase fold and suggest that atypical kinases and pseudokinases should be analyzed for alternative transferase activities. In this chapter, we discuss a general approach for bioinformatically identifying divergent or atypical members of an enzyme superfamily, then present an experimental approach to characterize their catalytic activity.


Assuntos
Trifosfato de Adenosina , Proteínas Quinases , Catálise , Domínio Catalítico , Humanos , Proteínas Quinases/química
6.
Sci Rep ; 12(1): 21782, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526881

RESUMO

The pathogenic Legionella bacteria are notorious for delivering numerous effector proteins into the host cell with the aim of disturbing and hijacking cellular processes for their benefit. Despite intensive studies, many effectors remain uncharacterized. Motivated by the richness of Legionella effector repertoires and their oftentimes atypical biochemistry, also by several known atypical Legionella effector kinases and pseudokinases discovered recently, we undertook an in silico survey and exploration of the pan-kinome of the Legionella genus, i.e., the union of the kinomes of individual species. In this study, we discovered 13 novel (pseudo)kinase families (all are potential effectors) with the use of non-standard bioinformatic approaches. Together with 16 known families, we present a catalog of effector and non-effector protein kinase-like families within Legionella, available at http://bioinfo.sggw.edu.pl/kintaro/ . We analyze and discuss the likely functional roles of the novel predicted kinases. Notably, some of the kinase families are also present in other bacterial taxa, including other pathogens, often phylogenetically very distant from Legionella. This work highlights Nature's ingeniousness in the pathogen-host arms race and offers a useful resource for the study of infection mechanisms.


Assuntos
Legionella pneumophila , Legionella , Legionella/metabolismo , Proteínas Quinases/metabolismo , Biologia Computacional , Legionella pneumophila/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno
7.
PeerJ ; 9: e11051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854844

RESUMO

The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers full understanding of the functioning of the living cells. ADP-ribosylation is a common post-translational modification of proteins; also nucleic acids and small molecules can be modified by the covalent attachment of ADP-ribose. This modification, important in cellular signalling and infection processes, is usually executed by enzymes from the large superfamily of ADP-ribosyltransferases (ARTs). Here, using bioinformatics approaches, we identify a novel putative ADP-ribosyltransferase family, conserved in eukaryotic evolution, with a divergent active site. The hallmark of these proteins is the ART domain nestled between flanking leucine-rich repeat (LRR) domains. LRRs are typically involved in innate immune surveillance. The novel family appears as putative novel ADP-ribosylation-related actors, most likely pseudoenzymes. Sequence divergence and lack of clearly detectable "classical" ART active site suggests the novel domains are pseudoARTs, yet atypical ART activity, or alternative enzymatic activity cannot be excluded. We propose that this family, including its human member LRRC9, may be involved in an ancient defense mechanism, with analogies to the innate immune system, and coupling pathogen detection to ADP-ribosyltransfer or other signalling mechanisms.

8.
Science ; 364(6442): 787-792, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123136

RESUMO

Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Ácido Poliglutâmico/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fatores de Virulência/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Calmodulina/química , Calmodulina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Células HEK293 , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Fosforilação , Ácido Poliglutâmico/química , Ácido Poliglutâmico/genética , Domínios Proteicos/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Fatores de Virulência/química , Fatores de Virulência/genética
9.
PeerJ ; 5: e3849, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966893

RESUMO

Many bacterial effector proteins that are delivered to host cells during infection are enzymes targeting host cell signalling. Recently, Legionella pneumophila effector Lpg1137 was experimentally characterised as a serine protease that cleaves human syntaxin 17. We present strong bioinformatic evidence that Lpg1137 is a homologue of mitochondrial carrier proteins and is not related to known serine proteases. We also discuss how this finding can be reconciled with the apparently contradictory experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA