Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2308215121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294944

RESUMO

In various biological systems, information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to milli-Kelvin (mK) temperature increases, a thousand times more sensitive than their molecular sensors, thermo-transient receptor potential (TRP) ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the times between consecutive APs even in the presence of readout noise. A key model prediction is that the coefficient of variation in the distribution of interspike times decreases with AP frequency, and quantitative comparison with experiments indeed suggests that nerve fibers of snakes are located very close to the bifurcation. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.


Assuntos
Crotalinae , Canais de Potencial de Receptor Transitório , Animais , Serpentes/fisiologia , Temperatura , Potenciais de Ação
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042812

RESUMO

Time efficiency of self-assembly is crucial for many biological processes. Moreover, with the advances of nanotechnology, time efficiency in artificial self-assembly becomes ever more important. While structural determinants and the final assembly yield are increasingly well understood, kinetic aspects concerning the time efficiency, however, remain much more elusive. In computer science, the concept of time complexity is used to characterize the efficiency of an algorithm and describes how the algorithm's runtime depends on the size of the input data. Here we characterize the time complexity of nonequilibrium self-assembly processes by exploring how the time required to realize a certain, substantial yield of a given target structure scales with its size. We identify distinct classes of assembly scenarios, i.e., "algorithms" to accomplish this task, and show that they exhibit drastically different degrees of complexity. Our analysis enables us to identify optimal control strategies for nonequilibrium self-assembly processes. Furthermore, we suggest an efficient irreversible scheme for the artificial self-assembly of nanostructures, which complements the state-of-the-art approach using reversible binding reactions and requires no fine-tuning of binding energies.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Polímeros/química , Algoritmos , Simulação por Computador , Cinética , Modelos Teóricos , Análise de Sistemas , Fatores de Tempo
3.
Biophys J ; 118(2): 313-324, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31843261

RESUMO

Protein filament networks are structures crucial for force generation and cell shape. A central open question is how collective filament dynamics emerges from interactions between individual network constituents. To address this question, we study a minimal but generic model for a nematic network in which filament sliding is driven by the action of motor proteins. Our theoretical analysis shows how the interplay between viscous drag on filaments and motor-induced forces governs force propagation through such interconnected filament networks. We find that the ratio between these antagonistic forces establishes the range of filament interaction, which determines how the local filament velocity depends on the polarity of the surrounding network. This force-propagation mechanism implies that the polarity-independent sliding observed in Xenopus egg extracts and in vitro experiments with purified components is a consequence of a large force-propagation length. We suggest how our predictions can be tested by tangible in vitro experiments whose feasibility is assessed with the help of simulations and an accompanying theoretical analysis.


Assuntos
Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Animais , Conformação Proteica , Xenopus
4.
PLoS Comput Biol ; 13(9): e1005747, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28957328

RESUMO

A deterministic population dynamics model involving birth and death for a two-species system, comprising a wild-type and more resistant species competing via logistic growth, is subjected to two distinct stress environments designed to mimic those that would typically be induced by temporal variation in the concentration of a drug (antibiotic or chemotherapeutic) as it permeates through the population and is progressively degraded. Different treatment regimes, involving single or periodical doses, are evaluated in terms of the minimal population size (a measure of the extinction probability), and the population composition (a measure of the selection pressure for resistance or tolerance during the treatment). We show that there exist timescales over which the low-stress regime is as effective as the high-stress regime, due to the competition between the two species. For multiple periodic treatments, competition can ensure that the minimal population size is attained during the first pulse when the high-stress regime is short, which implies that a single short pulse can be more effective than a more protracted regime. Our results suggest that when the duration of the high-stress environment is restricted, a treatment with one or multiple shorter pulses can produce better outcomes than a single long treatment. If ecological competition is to be exploited for treatments, it is crucial to determine these timescales, and estimate for the minimal population threshold that suffices for extinction. These parameters can be quantified by experiment.


Assuntos
Antibacterianos , Bactérias/efeitos dos fármacos , Infecções Bacterianas , Modelos Biológicos , Dinâmica Populacional , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Caenorhabditis elegans , Biologia Computacional , Ecologia
5.
Phys Rev Lett ; 118(12): 128101, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388182

RESUMO

Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.


Assuntos
Extensões da Superfície Celular , Citoesqueleto , Proteínas Motores Moleculares , Movimento (Física) , Transporte Biológico Ativo , Difusão , Cinética , Modelos Biológicos
6.
bioRxiv ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-38853849

RESUMO

Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.

7.
ArXiv ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-38855541

RESUMO

Living systems continually respond to signals from the surrounding environment. Survival requires that their responses adapt quickly and robustly to the changes in the environment. One particularly challenging example is olfactory navigation in turbulent plumes, where animals experience highly intermittent odor signals while odor concentration varies over many length- and timescales. Here, we show theoretically that Drosophila olfactory receptor neurons (ORNs) can exploit proximity to a bifurcation point of their firing dynamics to reliably extract information about the timing and intensity of fluctuations in the odor signal, which have been shown to be critical for odor-guided navigation. Close to the bifurcation, the system is intrinsically invariant to signal variance, and information about the timing, duration, and intensity of odor fluctuations is transferred efficiently. Importantly, we find that proximity to the bifurcation is maintained by mean adaptation alone and therefore does not require any additional feedback mechanism or fine-tuning. Using a biophysical model with calcium-based feedback, we demonstrate that this mechanism can explain the measured adaptation characteristics of Drosophila ORNs.

8.
bioRxiv ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39091759

RESUMO

Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? To address this question, we use a discretized version of a standard model of basilar membrane dynamics, but with an explicit contribution from active processes in hair cells. Surprisingly, we find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of localized modes and a small number of collective extended modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. Our work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea.

9.
ArXiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38855545

RESUMO

E. coli use a regular lattice of receptors and attached kinases to detect and amplify faint chemical signals. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in ligand concentration. These characteristics are well described by models which achieve their gain through equilibrium cooperativity. But these models are challenged by two experimental results. First, neither adaptation nor large gain are present in receptor binding assays. Second, in cells lacking adaptation machinery, fluctuations can sometimes be enormous, with essentially all kinases transitioning together. Here we introduce a far-from equilibrium model in which receptors gate the spread of activity between neighboring kinases. This model achieves large gain through a mechanism we term lattice ultrasensitivity (LU). In our LU model, kinase and receptor states are separate degrees of freedom, and kinase kinetics are dominated by chemical rates far-from-equilibrium rather than by equilibrium allostery. The model recapitulates the successes of past models, but also matches the challenging experimental findings. Importantly, unlike past lattice critical models, our LU model does not require parameters to be fine tuned for function.

10.
ArXiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39070039

RESUMO

Sound produces surface waves along the cochlea's basilar membrane. To achieve the ear's astonishing frequency resolution and sensitivity to faint sounds, dissipation in the cochlea must be canceled via active processes in hair cells, effectively bringing the cochlea to the edge of instability. But how can the cochlea be globally tuned to the edge of instability with only local feedback? To address this question, we use a discretized version of a standard model of basilar membrane dynamics, but with an explicit contribution from active processes in hair cells. Surprisingly, we find the basilar membrane supports two qualitatively distinct sets of modes: a continuum of localized modes and a small number of collective extended modes. Localized modes sharply peak at their resonant position and are largely uncoupled. As a result, they can be amplified almost independently from each other by local hair cells via feedback reminiscent of self-organized criticality. However, this amplification can destabilize the collective extended modes; avoiding such instabilities places limits on possible molecular mechanisms for active feedback in hair cells. Our work illuminates how and under what conditions individual hair cells can collectively create a critical cochlea.

11.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854030

RESUMO

E. coli use a regular lattice of receptors and attached kinases to detect and amplify faint chemical signals. Kinase output is characterized by precise adaptation to a wide range of background ligand levels and large gain in response to small relative changes in ligand concentration. These characteristics are well described by models which achieve their gain through equilibrium cooperativity. But these models are challenged by two experimental results. First, neither adaptation nor large gain are present in receptor binding assays. Second, in cells lacking adaptation machinery, fluctuations can sometimes be enormous, with essentially all kinases transitioning together. Here we introduce a far-from equilibrium model in which receptors gate the spread of activity between neighboring kinases. This model achieves large gain through a mechanism we term lattice ultrasensitivity (LU). In our LU model, kinase and receptor states are separate degrees of freedom, and kinase kinetics are dominated by chemical rates far-from-equilibrium rather than by equilibrium allostery. The model recapitulates the successes of past models, but also matches the challenging experimental findings. Importantly, unlike past lattice critical models, our LU model does not require parameters to be fine tuned for function.

12.
ArXiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214131

RESUMO

In various biological systems information from many noisy molecular receptors must be integrated into a collective response. A striking example is the thermal imaging organ of pit vipers. Single nerve fibers in the organ reliably respond to mK temperature increases, a thousand times more sensitive than their molecular sensors, thermo-TRP ion channels. Here, we propose a mechanism for the integration of this molecular information. In our model, amplification arises due to proximity to a dynamical bifurcation, separating a regime with frequent and regular action potentials (APs), from a regime where APs are irregular and infrequent. Near the transition, AP frequency can have an extremely sharp dependence on temperature, naturally accounting for the thousand-fold amplification. Furthermore, close to the bifurcation, most of the information about temperature available in the TRP channels' kinetics can be read out from the timing of APs even in the presence of readout noise. While proximity to such bifurcation points typically requires fine-tuning of parameters, we propose that having feedback act from the order parameter (AP frequency) onto the control parameter robustly maintains the system in the vicinity of the bifurcation. This robustness suggests that similar feedback mechanisms might be found in other sensory systems which also need to detect tiny signals in a varying environment.

13.
Phys Rev Res ; 4(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-38343561

RESUMO

Theoretical work has shed light on the phase behavior of idealized mixtures of many components with random interactions. However, typical mixtures interact through particular physical features, leading to a structured, nonrandom interaction matrix of lower rank. Here, we develop a theoretical framework for such mixtures and derive mean-field conditions for thermodynamic stability and critical behavior. Irrespective of the number of components and features, this framework allows for a generally lower-dimensional representation in the space of features and proposes a principled way to coarse-grain multicomponent mixtures as binary mixtures. Moreover, it suggests a way to systematically characterize different series of critical points and their codimensions in mean-field. Since every pairwise interaction matrix can be expressed in terms of features, our work is applicable to a broad class of mean-field models.

14.
Elife ; 92020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022683

RESUMO

A guiding principle in self-assembly is that, for high production yield, nucleation of structures must be significantly slower than their growth. However, details of the mechanism that impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-sized target structures employing mathematical modeling. We investigate two key scenarios to delay nucleation: (i) by introducing a slow activation step for the assembling constituents and, (ii) by decreasing the dimerization rate. These scenarios have widely different characteristics. While the dimerization scenario exhibits robust behavior, the activation scenario is highly sensitive to demographic fluctuations. These demographic fluctuations ultimately disfavor growth compared to nucleation and can suppress yield completely. The occurrence of this stochastic yield catastrophe does not depend on model details but is generic as soon as number fluctuations between constituents are taken into account. On a broader perspective, our results reveal that stochasticity is an important limiting factor for self-assembly and that the specific implementation of the nucleation process plays a significant role in determining the yield.


The self-assembly of a large biological molecule from small building blocks is like finishing a puzzle of magnetic pieces by shaking the box. Even though each piece of the puzzle is attracted to its correct neighbours, the limited control makes it very hard to finish the puzzle in a short amount of time. The problem becomes even more difficult if several copies of the same puzzle are assembled in one box. If several puzzles start at the same time, the different parts might steal pieces from each other, making it impossible to successfully complete any of the puzzles. This is called a depletion trap. If the box is only shaken and there is no real control over individual pieces, these traps occur at random. Overcoming these random depletion traps is an important challenge when assembling nanostructures and other artificial molecules designed by humans without wasting many, potentially expensive, components. Previous studies have shown that when multiple copies of the same structure are assembled simultaneously, slowing the rate of initiation increases the yield of correctly-made structures. This prevents new structures from stealing pieces from existing structures before they are fully completed. Now, Gartner, Graf, Wilke et al. have used a mathematical model to show that changing the way initiation is delayed leads to different yields. This was especially true for small systems where fluctuations in the availability of the different pieces strongly enhanced the initiation of new structures. In these cases, the self-assembly process terminated undesirably with many incomplete structures. Nanostructures have various applications ranging from drug delivery to robotics. These findings suggest that in order to efficiently assemble biological molecules, the concentrations of the different building blocks need to be tightly controlled. A question for further research is to investigate strategies that reduce fluctuations in the availability of the building blocks to develop more efficient assembly protocols.


Assuntos
Modelos Teóricos , Processos Estocásticos , Dimerização
15.
Phys Rev E ; 98(1-1): 012410, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110755

RESUMO

The totally asymmetric simple exclusion process (TASEP) is a paradigmatic stochastic model for nonequilibrium physics, and has been successfully applied to describe active transport of molecular motors along cytoskeletal filaments. Building on this simple model, we consider a two-lane lattice-gas model that couples directed transport (TASEP) to diffusive motion in a semiclosed geometry, and simultaneously accounts for spontaneous growth and particle-induced shrinkage of the system's size. This particular extension of the TASEP is motivated by the question of how active transport and diffusion might influence length regulation in confined systems. Surprisingly, we find that the size of our intrinsically stochastic system exhibits robust temporal patterns over a broad range of growth rates. More specifically, when particle diffusion is slow relative to the shrinkage dynamics, we observe quasiperiodic changes in length. We provide an intuitive explanation for the occurrence of these self-organized temporal patterns, which is based on the imbalance between the diffusion and shrinkage speed in the confined geometry. Finally, we formulate an effective theory for the oscillatory regime, which explains the origin of the oscillations and correctly predicts the dependence of key quantities, such as the oscillation frequency, on the growth rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA