Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ergonomics ; 66(6): 749-761, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36102976

RESUMO

To gain a greater understanding of motor variability (MV) as an individual trait, the effect of task type on MV and individual consistency in MV across three tasks was investigated. Twenty participants performed repetitive carrying, lifting, and simulated sawing tasks. MV was assessed using the linear measure of mean point-by-point standard deviation in three-dimensional upper body joint angles. Task type affected MV, where carrying showed higher MV compared to sawing (23-29%) and lifting (12-19%). Furthermore, MV was higher in lifting compared to sawing (12-25%). Poor to moderate individual consistency (ICC = 0.42-0.63) was found across tasks. Task type determined MV and only some support for MV as an individual trait across tasks was found. Based on this work, differences in degrees of freedom afforded by the task influence the opportunity to exploit MV, and possibly individual consistency in MV magnitude is specific to the degrees of freedom afforded by the task. Practitioner summary: In repetitive tasks, movement variability has been proposed as an individual characteristic independent of task characteristics, where repeaters show consistently low variability, while replacers show consistently high variability. In the current study, only moderate support was demonstrated for variability as a consistent individual characteristic across different manual tasks.AbbreviationMV: Motor variability; WRMSDs: Work-related musculoskeletal disorders; DOF: Degrees of freedom; meanSD: Mean standard deviation; SD: Standard deviation; H: Handle (of simulated sawing setup); T: Track (of simulated sawing setup); F: Frame (of simulated sawing setup); ICC: Intraclass correlation; UE: Upper extremity; MMH: Manual material handling; EMG: Electromyography.


Assuntos
Fenômenos Biomecânicos , Remoção , Destreza Motora , Esforço Físico , Análise de Variância , Inquéritos e Questionários , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Movimento/fisiologia , Doenças Musculoesqueléticas/etiologia , Doenças Musculoesqueléticas/fisiopatologia , Medição de Risco , Extremidade Superior/fisiologia , Eletromiografia , Destreza Motora/fisiologia , Saúde , Estudos Transversais , Esforço Físico/fisiologia
2.
J Sports Sci ; 40(19): 2166-2172, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36415053

RESUMO

The purposes of this study were to determine if 1) recurrent neural networks designed for multivariate, time-series analyses outperform traditional linear and non-linear machine learning classifiers when classifying athletes based on competition level and sport played, and 2) athletes of different sports move differently during non-sport-specific movement screens. Optical-based kinematic data from 542 athletes were used as input data for nine different machine learning algorithms to classify athletes based on competition level and sport played. For the traditional machine learning classifiers, principal component analysis and feature selection were used to reduce the data dimensionality and to determine the best principal components to retain. Across tasks, recurrent neural networks and linear machine learning classifiers tended to outperform the non-linear machine learning classifiers. For all tasks, reservoir computing took the least amount of time to train. Across tasks, reservoir computing had one of the highest classification rates and took the least amount of time to train; however, interpreting the results is more difficult compared to linear classifiers. In addition, athletes were successfully classified based on sport suggesting that athletes competing in different sports move differently during non-sport specific movements. Therefore, movement assessment screens should incorporate sport-specific scoring criteria.


Assuntos
Esportes , Humanos , Aprendizado de Máquina , Movimento , Redes Neurais de Computação , Algoritmos
3.
J Great Lakes Res ; 48(3): 849-855, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36591538

RESUMO

Efforts to make research environments more inclusive and diverse are beneficial for the next generation of Great Lakes researchers. The global COVID-19 pandemic introduced circumstances that forced graduate programs and academic institutions to re-evaluate and promptly pivot research traditions, such as weekly seminar series, which are critical training grounds and networking opportunities for early career researchers (ECRs). While several studies have established that academics with funded grants and robust networks were better able to weather the abrupt changes in research and closures of institutions, ECRs did not. In response, both existing and novel partnerships provided a resilient network to support ECRs at an essential stage of their career development. Considering these challenges, we sought to re-frame the seminar series as a virtual collaboration for ECRs. Two interdisciplinary graduate programs, located in different countries (Windsor, Canada, and Detroit, USA) invested in a year-long partnership to deliver a virtual-only seminar series that intentionally promoted: the co-creation of protocols and co-led roles, the amplification of justice, equity, diversity and inclusion throughout all aspects of organization and representation, engagement and amplification through social media, the integration of social, scientific and cultural research disciplines, all of which collectively showcased the capacity of our ECRs to lead, organize and communicate. This approach has great potential for application across different communities to learn through collaboration and sharing, and to empower the next generation to find new ways of working together.

4.
Clin Transplant ; 35(2): e14153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33185894

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is a common cause of allograft dysfunction and patient morbidity in solid organ transplantation. This study compares the effect of different inhaled anesthetics on early IRI and clinical outcomes in pancreas allograft recipients. METHODS: Data were extracted retrospectively for pancreas transplants at a single center over a 15-year period. Early postoperative pancreatic amylase and lipase levels were used as a marker for graft injury. Clinical outcomes measured included length of hospital stay, readmission, and graft survival. RESULTS: There were 625 pancreas transplants included in the analysis with 3 primary inhaled anesthetics: sevoflurane (53%), desflurane (35%), and isoflurane (12%). In the first 30 days post-transplant, peak amylase was lowest for sevoflurane (147) followed by desflurane (159) and isoflurane (229) (p = .03). Peak lipase levels followed the same trend (peak values 118, 131, and 135, respectively; p = .02). Early graft loss, length of hospital stay, and readmission within 3 months were similar among all three anesthetic groups. There was no difference in 10-year graft survival by Cox regression. CONCLUSIONS: Sevoflurane and desflurane are associated with lower peak amylase and lipase levels postoperatively in pancreas transplantation. Short- and long-term clinical outcomes were equivalent for the three agents.


Assuntos
Anestésicos Inalatórios , Éteres Metílicos , Transplante de Pâncreas , Desflurano , Humanos , Estudos Retrospectivos
5.
Eur Spine J ; 30(4): 1035-1042, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156439

RESUMO

PURPOSE: To evaluate the effect of the braced arm-to-thigh technique (BATT) (versus self-selected techniques) on three-dimensional trunk kinematics and spinal loads for three common activities of daily living (ADLs) simulated in the laboratory: weeding (gardening), reaching for an object in a low cupboard, and car egress using the two-legs out technique. METHODS: Ten young healthy males performed each task using a self-selected technique, and then using the BATT. The pulling action of weeding was simulated using a magnet placed on a steel plate. Cupboard and car egress tasks were simulated using custom apparatus representing the dimensions of a kitchen cabinet and a medium-sized Australian car, respectively. Three-dimensional trunk kinematics and L4/L5 spinal loads were estimated using the Lifting Full-Body OpenSim model and compared between techniques. Paired t-tests were used to compare peak values between methods (self-selected vs BATT). RESULTS: The BATT significantly reduced peak extension moments (13-51%), and both compression (27-45%) and shear forces (31-62%) at L4/L5, compared to self-selected techniques for all three tasks (p < 0.05). Lateral bending angles increased with the BATT for weeding and cupboard tasks, but these changes were expected as the BATT inherently introduces asymmetric trunk motion. CONCLUSION: The BATT substantially reduced L4/L5 extension moments, and L4/L5 compression and shear forces, compared to self-selected methods, for three ADLs, in a small cohort of ten young healthy males without prior history of back pain. These study findings can be used to inform safe procedures for these three ADLs, as the results are considered representative of a mature population.


Assuntos
Atividades Cotidianas , Coxa da Perna , Braço , Austrália , Fenômenos Biomecânicos , Humanos , Vértebras Lombares , Masculino , Coluna Vertebral , Suporte de Carga
6.
J Occup Rehabil ; 31(1): 50-62, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32248432

RESUMO

Purpose The Epic Lift Capacity (ELC) test is used to determine a worker's maximum lifting capacity. In the ELC test, maximum lifting capacity is often determined as the maximum weight lifted without exhibiting a visually appraised "high-risk workstyle." However, the criteria for evaluating lifting mechanics have limited justification. This study applies feature detection and biomechanical analysis to motion capture data obtained while participants performed the ELC test to objectively identify aspects of movement that may help define "high-risk workstyle". Method In this cross-sectional study, 24 participants completed the ELC test. We applied Principal Component Analysis, as a feature detection approach, and biomechanical analysis to motion capture data to objectively identify movement features related to biomechanical exposure on the low back and shoulders. Principal component scores were compared between high and low exposure trials (relative to median exposure) to determine if features of movement differed. Features were interpreted using single component reconstructions of principal components. Results Statistical testing showed that low exposure lifts and lowers maintained the body closer to the load, exhibited squat-like movement (greater knee flexion, wider base of support), and remained closer to neutral posture at the low back (less forward flexion and axial twist) and shoulder (less flexion and abduction). Conclusions Use of feature detection and biomechanical analyses revealed movement features related to biomechanical exposure at the low back and shoulders. The objectively identified criteria could augment the existing scoring criteria for ELC test technique assessment. In the future, such features can inform the design of classifiers to objectively identify "high-risk workstyle" in real-time.


Assuntos
Movimento , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Remoção , Amplitude de Movimento Articular
7.
Sensors (Basel) ; 21(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34833766

RESUMO

Motor variability in gait is frequently linked to fall risk, yet field-based biomechanical joint evaluations are scarce. We evaluated the validity and sensitivity of an inertial measurement unit (IMU)-driven biomechanical model of joint angle variability for gait. Fourteen healthy young adults completed seven-minute trials of treadmill gait at several speeds and arm swing amplitudes. Trunk, pelvis, and lower-limb joint kinematics were estimated by IMU- and optoelectronic-based models using OpenSim. We calculated range of motion (ROM), magnitude of variability (meanSD), local dynamic stability (λmax), persistence of ROM fluctuations (DFAα), and regularity (SaEn) of each angle over 200 continuous strides, and evaluated model accuracy (RMSD: root mean square difference), consistency (ICC2,1: intraclass correlation), biases, limits of agreement, and sensitivity to within-participant gait responses (effects of speed and swing). RMSDs of joint angles were 1.7-9.2° (pooled mean of 4.8°), excluding ankle inversion. ICCs were mostly good to excellent in the primary plane of motion for ROM and in all planes for meanSD and λmax, but were poor to moderate for DFAα and SaEn. Modelled speed and swing responses for ROM, meanSD, and λmax were similar. Results suggest that the IMU-driven model is valid and sensitive for field-based assessments of joint angle time series, ROM in the primary plane of motion, magnitude of variability, and local dynamic stability.


Assuntos
Articulação do Tornozelo , Marcha , Tornozelo , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Caminhada , Adulto Jovem
8.
Biotechnol Bioeng ; 117(9): 2802-2815, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436993

RESUMO

A mycoplasma contamination event in a biomanufacturing facility can result in costly cleanups and potential drug shortages. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and penetrate the standard 0.2-µm filters used in the clarification of harvested cell culture fluid. Previously, we reported a study regarding the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G 1 (IgG1) antibody. Our previous work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Careful evaluation of certain identified process parameters over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before detection from a traditional method. In this report, we studied the changes in the IgG1 product quality produced by CHO cells considered to be induced by the M. arginini contamination events. We observed changes in critical quality attributes correlated with the duration of contamination, including increased acidic charge variants and high mannose species, which were further modeled using principal component analysis to explore the relationships among M. arginini contamination, CHO cell growth and metabolites, and IgG1 product quality attributes. Finally, partial least square models using NIR spectral data were used to establish predictions of high levels (≥104 colony-forming unit [CFU/ml]) of M. arginini contamination, but prediction of levels below 104 CFU/ml were not reliable. Contamination of CHO cells with M. arginini resulted in significant reduction of antibody product quality, highlighting the importance of rapid microbiological testing and mycoplasma testing during particularly long upstream bioprocesses to ensure product safety and quality.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/normas , Mycoplasma , Animais , Produtos Biológicos/análise , Produtos Biológicos/normas , Células CHO/microbiologia , Cricetinae , Cricetulus , Contaminação de Medicamentos , Estatística como Assunto
9.
Appl Microbiol Biotechnol ; 104(3): 1097-1108, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858193

RESUMO

The variability of trace metals in cell culture media is a potential manufacturing concern because it may significantly affect the production and quality of therapeutic proteins. Variability in trace metals in CHO cell culture has been shown to impact critical production metrics such as cell growth, viability, nutrient consumption, and production of recombinant proteins. To better understand the influence of excess supplementation, zinc and copper were initially supplemented with 50-µM concentrations to determine the impact on the production and quality of ß-glucuronidase, a lysosomal enzyme, in a parallel bioreactor system. Ethylenediaminetetraacetic acid (EDTA), a metal chelator, was included as another treatment to induce a depletion of trace metal bioavailability to examine deficiency. Samples were drawn daily to monitor cell growth and viability, nutrient levels, ß-glucuronidase activity, and trace zinc flux. Cell cycle analysis revealed the inhibition of sub-G0/G1 species in zinc supplemented cultures, maintaining higher viability compared to the control, EDTA-, and copper-supplemented cultures. Enzyme activity analysis in the harvests revealed higher specific activity of ß-glucuronidase in reactors supplemented with zinc. A confirmation run was conducted with supplementations of zinc at concentrations of 50, 100, and 150 µM. Further cell cycle analysis and caspase-3 analysis demonstrated the role of zinc as an apoptosis suppressor responsible for the enhanced harvest purity of ß-glucuronidase from zinc-supplemented bioreactors.


Assuntos
Apoptose/efeitos dos fármacos , Meios de Cultura/química , Glucuronidase/biossíntese , Zinco/farmacologia , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Cobre/farmacologia , Cricetulus
10.
Sensors (Basel) ; 20(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751920

RESUMO

Investigating the effects of load carriage on military soldiers using optical motion capture is challenging. However, inertial measurement units (IMUs) provide a promising alternative. Our purpose was to compare optical motion capture with an Xsens IMU system in terms of movement reconstruction using principal component analysis (PCA) using correlation coefficients and joint kinematics using root mean squared error (RMSE). Eighteen civilians performed military-type movements while their motion was recorded using both optical and IMU-based systems. Tasks included walking, running, and transitioning between running, kneeling, and prone positions. PCA was applied to both the optical and virtual IMU markers, and the correlations between the principal component (PC) scores were assessed. Full-body joint angles were calculated and compared using RMSE between optical markers, IMU data, and virtual markers generated from IMU data with and without coordinate system alignment. There was good agreement in movement reconstruction using PCA; the average correlation coefficient was 0.81 ± 0.14. RMSE values between the optical markers and IMU data for flexion-extension were less than 9°, and 15° for the lower and upper limbs, respectively, across all tasks. The underlying biomechanical model and associated coordinate systems appear to influence RMSE values the most. The IMU system appears appropriate for capturing and reconstructing full-body motion variability for military-based movements.

11.
Sensors (Basel) ; 20(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384664

RESUMO

An objective method to detect muscle fatigue-related kinematic changes may reduce workplace injuries. However, heterogeneous responses to muscle fatigue suggest that subject-specific analyses are necessary. The objectives of this study were to: (1) determine if wearable inertial measurement units (IMUs) could be used in conjunction with a spine motion composite index (SMCI) to quantify subject-specific changes in spine kinematics during a repetitive spine flexion-extension (FE) task; and (2) determine if the SMCI was correlated with measures of global trunk muscle fatigue. Spine kinematics were measured using wearable IMUs in 10 healthy adults during a baseline set followed by 10 sets of 50 spine FE repetitions. After each set, two fatigue measures were collected: perceived level of fatigue using a visual analogue scale (VAS), and maximal lift strength. SMCIs incorporating 10 kinematic variables from 2 IMUs (pelvis and T8 vertebrae) were calculated and used to quantify subject-specific changes in movement. A main effect of set was observed (F (1.7, 15.32) = 10.42, p = 0.002), where the SMCI became significantly greater than set 1 starting at set 4. Significant correlations were observed between the SMCI and both fatigue VAS and maximal lift strength at the individual and study level. These findings support the use of wearable IMUs to detect subject-specific changes in spine motion associated with muscle fatigue.


Assuntos
Fadiga , Coluna Vertebral , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Fadiga Muscular , Amplitude de Movimento Articular
12.
J Sports Sci Med ; 19(1): 130-137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132836

RESUMO

Different shoes and strike patterns produce different biomechanical characteristics that can affect injury risk. Running shoes are mainly designed as lightweight, minimal, or traditional cushioned types. Previous research on different shoes utilized shoes of not only different mass but also different shoe structures. However, it is unclear whether biomechanical changes during running in different shoe types with differing mass are the result of the structural design or the mass of the shoe. Thus, the purpose of this study was to investigate the effect of shoes of different mass on running gait biomechanics. Twenty male runners participated in this study. The experimental shoe masses used in this study were 175, 255, 335 and 415 g. The peak vertical ground reaction force increased with shoe mass (p < 0.05), but the strike index, ankle plantarflexion at initial contact, peak moment of the ankle during the stance phase, and initial contact angles of the lower extremity joints did not change. During the pre-activation phase, the integrated EMG data showed that the tibialis anterior muscle was the most activated with the 175 g and 415 g shoes (p < 0.05). During the push-off phase, the semitendinosus, lateral gastrocnemius and soleus muscles displayed higher activation with the heavier shoes (p < 0.05). The center of pressure also moves forward; resulting in mid foot striking. The lightest shoes might increase gastrocnemius muscle fatigue during the braking phase. The heaviest shoes could cause semitendinosus and triceps surae muscle fatigue during the push-off phase. Therefore, runners should consider their lower extremity joints, muscle adaptation and cushioning to remain in their preferred movement path.


Assuntos
Pé/fisiologia , Corrida/fisiologia , Sapatos , Tornozelo/fisiologia , Traumatismos em Atletas/prevenção & controle , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Desenho de Equipamento , Análise da Marcha , Humanos , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Pressão , Corrida/lesões , Adulto Jovem
13.
Biotechnol Bioeng ; 116(12): 3446-3456, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403183

RESUMO

Trace metals are supplied to chemically-defined media (CDM) for optimal Chinese hamster ovary (CHO) cell culture performance during the production of monoclonal antibodies and other therapeutic proteins. However, lot-to-lot and vendor-to-vendor variability in raw materials consequently leads to an imbalance of trace metals that are supplied to CDM. This imbalance can yield detrimental effects rooted in several primary mechanisms and pathways including oxidative stress, apoptosis, lactate accumulation, and unfavorable glycan synthesis. Recent research endeavors involve supplying zinc, copper, and manganese to CDM in excess to further maximize culture productivity and product quality. These treatments significantly impact critical quality attributes and furthermore highlight the degree to which trace metal availability can affect CHO cell culture performance. This review highlights the role of trace metal variability, supplementation, and interplay on key cellular mechanisms responsible for overall culture performance and the production and quality of therapeutic proteins.


Assuntos
Técnicas de Cultura de Células , Meios de Cultura , Oligoelementos , Animais , Anticorpos Monoclonais/biossíntese , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/química , Meios de Cultura/farmacologia , Oligoelementos/química , Oligoelementos/farmacologia
14.
J Sports Sci ; 36(14): 1623-1629, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29160140

RESUMO

Sport-specific resistance training, through limb loading, can be a complimentary training method to traditional resistance training by loading the working muscles during all phases of a specific movement. The purpose of this study was to examine the acute effects of skating with an additional load on the skate, using a skate weight prototype, on kinematics, kinetics, and muscle activation during the acceleration phase while skating on a synthetic ice surface. 10 male hockey skaters accelerated from rest (standing erect with knees slightly bent) under four non-randomized load conditions: baseline 1 (no weight), light (0.9 kg per skate), heavy (1.8 kg per skate), and baseline 2 (no weight). Skating with additional weight caused athletes to skate slower (p < 0.001; η2 = 0.551), and led to few changes in kinematics: hip sagittal range of motion (ROM) decreased (2.2°; p = 0.032; η2 = 0.274), hip transverse ROM decreased (3.4°; p < 0.001; η2 = 0.494), ankle sagittal ROM decreased (2.3°; p = 0.022; η2 = 0.295), and knee sagittal ROM increased (7.8°; p < 0.001, η2 = 0.761). Overall, weighted skates decreased skating velocity, but athletes maintained similar muscle activation profiles (magnitude and trends) with minor changes to their skating kinematics.


Assuntos
Músculo Esquelético/fisiologia , Treinamento Resistido/métodos , Patinação/fisiologia , Equipamentos Esportivos , Acelerometria , Adolescente , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Eletromiografia , Desenho de Equipamento , Articulação do Quadril/fisiologia , Hóquei/fisiologia , Humanos , Gelo , Cinética , Articulação do Joelho/fisiologia , Masculino , Amplitude de Movimento Articular/fisiologia
15.
J Neuroeng Rehabil ; 13: 19, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26922079

RESUMO

BACKGROUND: Targeted activation of the transversus abdominis (TrA) muscle through the abdominal drawing-in maneuver (ADIM) is a frequently prescribed exercise for the prevention and rehabilitation of low back pain. However, there is still debate over the role the ADIM plays in maintaining a stable spine during movement. Thus, a single cohort pre/post-intervention protocol was used to examine whether 5 min of ADIM training prior to a dynamic movement task alters dynamic spine stability and control. METHODS: Thirteen healthy participants performed a repetitive spine flexion task twice, once before and once after they received biofeedback training on how to correctly perform the ADIM in standing. Abdominal and back muscle activation (indwelling and surface electromyography, EMG) and 3D kinematic data were recorded during all trials. EMG activation (percent maximum) and local dynamic stability of spine movement [maximum finite-time Lyapunov exponent (λmax)] were compared before and after the training using Friedman's rank test and repeated-measures ANOVA, respectively. To assess the moderating effects of absolute changes in EMG (∆EMG) of each muscle after training on changes in stability, the ∆EMG (peak and mean) were added to the ANOVA as separate covariates (ANCOVA). RESULTS: Following ADIM training, there were greater peak and mean levels of activation in all tested abdominal muscles, including TrA, (p < 0.05), but not in the back muscles. The ANOVA showed no significant change in λmax following training (p = 0.633). However, after considering the moderating effects of the ∆EMG seen in each muscle with training, it was found that only changes in TrA EMG significantly influenced stability. The ANCOVA revealed a significant main effect of training on stability as well as a significant interaction effect between training and ∆EMG recorded from TrA (p < 0.05); those with larger increases in TrA activation demonstrated larger improvements in stability. CONCLUSION: As a group, 5 min of ADIM training did not change spine stability during dynamic movement. However, those who were most successful in improving TrA activation with a 5-min ADIM training session showed the greatest improvements in local dynamic spine stability after training. As such, dynamic spine stability in some individuals may benefit from ADIM training.


Assuntos
Músculos Abdominais/fisiologia , Educação Física e Treinamento/métodos , Coluna Vertebral/fisiologia , Músculos Abdominais/inervação , Adulto , Músculos do Dorso/fisiopatologia , Biorretroalimentação Psicológica , Fenômenos Biomecânicos , Estudos de Coortes , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia
16.
J Appl Biomech ; 32(5): 526-31, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27633348

RESUMO

Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).


Assuntos
Músculos do Dorso/fisiologia , Vértebras Lombares/fisiologia , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Adulto Jovem
17.
Ergonomics ; 58(3): 480-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25396694

RESUMO

Load carriage is recognised as a primary occupational factor leading to slip and fall injuries, and therefore assessing balance maintenance during such tasks is critical in assessing injury risk. Ten males completed 55 strides under five carriage conditions: (1) unassisted anterior, (2) unassisted posterior, (3) assisted anterior, (4) assisted posterior and (5) unloaded gait (UG). Kinematic data were recorded from markers affixed to landmarks on the right side of each participant, in order to calculate segment angles for the foot, shank, thigh and pelvis. Continuous relative phase (CRP) variability was calculated for each segment pair and local dynamic stability was calculated for each segment in all three movement planes. In general, irrespective of the assistive device or movement plane, anterior load carriage was most stable (lower CRP variability and maximum finite-time Lyapunov exponents). Moreover, load carriage was less dynamically stable than UG, displaying the importance of objectively investigating safe load carriage practices. PRACTITIONER SUMMARY: Dynamical systems analyses were used to comprehensively evaluate the stability of various handheld load carriage methods. In general, anterior load carriage was significantly more stable than posterior load carriage,Mover's assistive device had small but beneficial effects on stability, and load carriage was less stable than UG.


Assuntos
Remoção , Análise e Desempenho de Tarefas , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos , Pé/fisiologia , Marcha , Mãos , Voluntários Saudáveis , Humanos , Perna (Membro)/fisiologia , Masculino , Movimento , Pelve/fisiologia , Equilíbrio Postural/fisiologia , Tecnologia Assistiva , Coxa da Perna/fisiologia , Adulto Jovem
18.
J Biomech Eng ; 136(12): 121006, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25322265

RESUMO

To facilitate stable trunk kinematics, humans must generate appropriate motor patterns to effectively control muscle force and stiffness and respond to biomechanical perturbations and/or neuromuscular control errors. Thus, it is important to understand physiological variables such as muscle force and stiffness, and how these relate to the downstream production of stable spine and trunk movements. This study was designed to assess the local dynamic stability of spine muscle activation and rotational stiffness patterns using Lyapunov analyses, and relationships to the local dynamic stability of resulting spine kinematics, during repetitive lifting and lowering at varying combinations of lifting load and rate. With an increase in the load lifted at a constant rate there was a trend for decreased local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness; although the only significant change was for the full state space muscle activation stability (p < 0.05). With an increase in lifting rate with a constant load there was a significant decrease in the local dynamic stability of spine muscle activations and the muscular contributions to spine rotational stiffness (p ≤ 0.001 for all measures). These novel findings suggest that the stability of motor inputs and the muscular contributions to spine rotational stiffness can be altered by external task demands (load and lifting rate), and therefore are important variables to consider when assessing the stability of the resulting kinematics.


Assuntos
Remoção , Vértebras Lombares/fisiologia , Fenômenos Mecânicos , Músculos/fisiologia , Fenômenos Biomecânicos , Humanos , Masculino , Modelos Biológicos , Adulto Jovem
19.
Ann Biomed Eng ; 52(2): 259-269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37741902

RESUMO

A fully articulated thoracolumbar spine model had been previously developed in OpenSim and had been extensively validated against experimental data during various static tasks. In the present study, we enhanced this detailed musculoskeletal model by adding the role of passive structures and adding kinematic constraints to make it suitable for dynamic tasks. We validated the spinal forces estimated by this enhanced model during nine dynamic lifting/lowering tasks. Moreover, we recently developed and evaluated five approaches in OpenSim to model the external loads applied to the hands during lifting/lowering tasks, and in the present study, we assessed which approach results in more accurate spinal forces. Regardless of the external load modeling approach, the maximum forces predicted by our enhanced spine model across all tasks, as well as the pattern of estimated spinal forces within each task, showed strong correlations (r-values and cross-correlation coefficients > 0.9) with experimental data. Given the biofidelity of our enhanced model, its accessibility via the open-source OpenSim software, and the extent to which this model has been validated, we recommend it for applications requiring estimation of spinal forces during lifting/lowering tasks using multibody-based models and inverse dynamic analyses.


Assuntos
Remoção , Coluna Vertebral , Fenômenos Biomecânicos , Vértebras Lombares , Humanos
20.
J Biomech ; 164: 111939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310004

RESUMO

Inertial measurement units (IMUs) offer a portable and inexpensive alternative to traditional optical motion capture systems, and have potential to support clinical diagnosis and treatment of low back pain; however, due to a lack of confidence regarding the validity of IMU-derived metrics, their uptake and acceptance remain a challenge. The objective of this work was to assess the concurrent validity of the Xsens DOT IMUs for tracking multiplanar spine movement, and to evaluate concurrent validity and reliability for estimating clinically relevant metrics relative to gold-standard optical motion capture equipment. Ten healthy controls performed spine range of motion (ROM) tasks, while data were simultaneously tracked from IMUs and optical marker clusters placed over the C7, T12, and S1 vertebrae. Root mean square error (RMSE), mean absolute error (MAE), and intraclass correlation coefficients (ICC2,1) were calculated to assess validity and reliability of absolute (abs; C7, T12, and S1 sensors) and relative joint (rel; intersegmental thoracic, lumbar, and total) motion. Overall RMSEabs = 1.33°, MAEabs = 0.74° ± 0.69, and ICC2,1,abs = 0.953 across all movements, sensors, and planes. Results were slightly better for uniplanar movements when evaluating the primary rotation axis (prim) absolute ROM (MAEabs,prim = 0.56° ± 0.49; ICC2,1,abs,prim = 0.999). Similarly, when evaluating relative intersegmental motion, overall RMSErel = 2.39°, MAErel = 1.10° ± 0.96, and ICC2,1,rel = 0.950, and relative primary rotation axis achieved MAErel,prim = 0.87° ± 0.77, and ICC2,1,rel,prim = 0.994. Findings from this study suggest that these IMUs can be considered valid for tracking multiplanar spine movement, and may be used to objectively assess spine movement and neuromuscular control in clinics.


Assuntos
Dor Lombar , Movimento , Humanos , Reprodutibilidade dos Testes , Sacro , Rotação , Amplitude de Movimento Articular , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA