Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38260439

RESUMO

Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the 'LIC-e' (leukemia initiating cells enriched) population. We find that Phf6 loss has context-specific transcriptional effects, skewing the LIC-e transcriptome to a more stem-like state. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Overall, our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.

2.
Leukemia ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004675

RESUMO

Acute myeloid leukemia is characterized by uncontrolled proliferation of self-renewing myeloid progenitors accompanied by a differentiation arrest. PHF6 is a chromatin-binding protein mutated in myeloid leukemias, and its isolated loss increases mouse HSC self-renewal without malignant transformation. We report here that Phf6 knockout increases the aggressiveness of Hoxa9-driven AML over serial transplantation, and increases the frequency of leukemia initiating cells. We define the in vivo hierarchy of Hoxa9-driven AML and identify a population that we term the "LIC-e" (leukemia initiating cells enriched) population. We find that Phf6 loss expands the LIC-e population and skews its transcriptome to a more stem-like state; concordant transcriptome shifts are also observed on PHF6 knockout in a human AML cell line and in PHF6 mutant patient samples from the BEAT AML dataset. We demonstrate that LIC-e accumulation in Phf6 knockout AML occurs not due to effects on cell cycle or apoptosis, but due to an increase in the fraction of its progeny that retain LIC-e identity. Our work indicates that Phf6 loss increases AML self-renewal through context-specific effects on leukemia stem cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA