Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30396997

RESUMO

NMDA receptors (NMDARs) are glutamate-gated ion channels that are key mediators of excitatory neurotransmission and synaptic plasticity throughout the central nervous system. They form massive heterotetrameric complexes endowed with unique allosteric capacity provided by eight extracellular clamshell-like domains arranged as two superimposed layers. Despite an increasing number of full-length NMDAR structures, how these domains cooperate in an intact receptor to control its activity remains poorly understood. Here, combining single-molecule and macroscopic electrophysiological recordings, cysteine biochemistry, and in silico analysis, we identify a rolling motion at a yet unexplored interface between the two constitute dimers in the agonist-binding domain (ABD) layer as a key structural determinant in NMDAR activation and allosteric modulation. This rotation acts as a gating switch that tunes channel opening depending on the conformation of the membrane-distal N-terminal domain (NTD) layer. Remarkably, receptors locked in a rolled state display "super-activity" and resistance to NTD-mediated allosteric modulators. Our work unveils how NMDAR domains move in a concerted manner to transduce long-range conformational changes between layers and command receptor channel activity.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Simulação por Computador , Cisteína/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Imagem Individual de Molécula , Xenopus laevis
2.
J Neurosci ; 34(50): 16630-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25505316

RESUMO

Ligand-gated ion channels (LGICs) mediate fast synaptic transmission in the CNS. Typically, these membrane proteins are multimeric complexes associating several homologous subunits around a central pore. Because of the large repertoire of subunits within each family, LGICs exist in vivo as multiple subtypes that differ in subunit composition and functional properties. Establishing the specific properties of individual receptor subtypes remains a major goal in the field of neuroscience and molecular pharmacology. However, isolating specific receptor subtype in recombinant systems can be problematic because of the mixture of receptor populations. This is the case for NMDA receptors (NMDARs), a large family of tetrameric glutamate-gated ion channels that play key roles in brain physiology and pathology. A significant fraction of native NMDARs are triheteromers composed of two GluN1 subunits and two different GluN2 subunits (GluN2A-D). We developed a method based on dual retention signals adapted from G-protein-coupled GABA-B receptors allowing exclusive cell surface expression of triheteromeric rat NMDARs while coexpressed diheteromeric receptors (which contain a single type of GluN2 subunit) are retained intracellularly. Using this approach, we determined the functional properties of GluN1/GluN2A/GluN2B triheteromers, one of the most abundant NMDAR subtypes in the adult forebrain, revealing their unique gating and pharmacological attributes. We envision applicability of the retention signal approach for the study of a variety of heteromeric glutamate-gated ion channel receptors with defined subunit composition.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Ácido Glutâmico/farmacologia , Glicina/farmacologia , Dados de Sequência Molecular , Subunidades Proteicas/agonistas , Subunidades Proteicas/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/agonistas , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
3.
J Biol Chem ; 288(43): 31080-92, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23986439

RESUMO

The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and ß cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced ß cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic ß cell development and insulin secretion.


Assuntos
Diferenciação Celular/fisiologia , Transportador de Glucose Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Animais , Transporte Biológico Ativo/genética , Linhagem Celular Tumoral , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Insulina/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Ratos , Transdução de Sinais , Xenopus laevis
4.
Biochim Biophys Acta ; 1828(11): 2399-409, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23791703

RESUMO

Several Cl(-) channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl(-) absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl(-)>Br(-)>NO3(-)>I(-). Single-channel recordings revealed a unit conductance of ~40pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~-65mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~20pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~+25mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253-260).


Assuntos
Canais de Cloreto/metabolismo , Animais , Células HEK293 , Humanos , Túbulos Renais/metabolismo , Técnicas de Patch-Clamp , Proteínas Recombinantes/metabolismo , Xenopus laevis
5.
Pflugers Arch ; 466(9): 1713-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24271511

RESUMO

ClC-Kb, a member of the ClC family of Cl(-) channels/transporters, plays a major role in the absorption of NaCl in the distal nephron. CLCNKB mutations cause Bartter syndrome type 3, a hereditary renal salt-wasting tubulopathy. Here, we investigate the functional consequences of a Val to Met substitution at position 170 (V170M, α helix F), which was detected in eight patients displaying a mild phenotype. Conductance and surface expression were reduced by ~40-50 %. The regulation of channel activity by external H(+) and Ca(2+) is a characteristic property of ClC-Kb. Inhibition by external H(+) was dramatically altered, with pKH shifting from 7.6 to 6.0. Stimulation by external Ca(2+) on the other hand was no longer detectable at pH 7.4, but was still present at acidic pH values. Functionally, these regulatory modifications partly counterbalance the reduced surface expression by rendering V170M hyperactive. Pathogenic Met170 seems to interact with another methionine on α helix H (Met227) since diverse mutations at this site partly removed pH sensitivity alterations of V170M ClC-Kb. Exploring other disease-associated mutations, we found that a Pro to Leu substitution at position 124 (α helix D, Simon et al., Nat Genet 1997, 17:171-178) had functional consequences similar to those of V170M. In conclusion, we report here for the first time that ClC-Kb disease-causing mutations located around the selectivity filter can result in both reduced surface expression and hyperactivity in heterologous expression systems. This interplay must be considered when analyzing the mild phenotype of patients with type 3 Bartter syndrome.


Assuntos
Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Mutação Puntual , Adulto , Cálcio/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Técnicas de Patch-Clamp , Fenótipo , Adulto Jovem
6.
Circ Res ; 109(10): 1120-31, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21921266

RESUMO

RATIONALE: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. OBJECTIVE: We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast-cardiomyocyte cross-talk. METHODS AND RESULTS: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. CONCLUSIONS: The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling.


Assuntos
Actinas/antagonistas & inibidores , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Actinas/metabolismo , Potenciais de Ação , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocalasina D/farmacologia , Depsipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/metabolismo , Fenótipo , Ratos , Ratos Wistar , Fibras de Estresse/metabolismo , Tiazolidinas/farmacologia , Fatores de Tempo
7.
Pflugers Arch ; 463(2): 247-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22083641

RESUMO

Dent's disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent's disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent's disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent's disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent's disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.


Assuntos
Canais de Cloreto/genética , Doença de Dent/genética , Mutação/genética , Canais de Cloreto/química , Doença de Dent/fisiopatologia , Retículo Endoplasmático/fisiologia , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia
8.
Hum Mutat ; 32(4): 476-83, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21305656

RESUMO

Mutations in the electrogenic Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in Xenopus laevis oocytes and in HEK293 cells of nine previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC-5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were nonfunctional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing, and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss of function in Dent disease.


Assuntos
Canais de Cloreto/genética , Doença de Dent/genética , Mutação , Sequência de Aminoácidos , Animais , Células Cultivadas , Canais de Cloreto/metabolismo , Doença de Dent/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Alinhamento de Sequência , Xenopus laevis
9.
Elife ; 102021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787081

RESUMO

De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.


Assuntos
Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
10.
Kidney Int ; 76(9): 999-1005, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19657328

RESUMO

Dent's disease is an X-linked recessive disorder affecting the proximal tubules and is frequently associated with mutations in CLCN5, which encodes the electrogenic chloride-proton exchanger ClC-5. To better understand the functional consequences of CLCN5 mutations in this disease, we screened four newly identified missense mutations (G179D, S203L, G212A, L469P), one new nonsense mutation (R718X), and three known mutations (L200R, C219R, and C221R), in Xenopus laevis oocytes and HEK293 cells expressing either wild-type or mutant exchanger. A type-I mutant (G212A) trafficked normally to the cell surface and to early endosomes, underwent complex glycosylation at the cell surface like wild-type ClC-5, but exhibited significant reductions in outwardly rectifying ion currents. The type-II mutants (G179D, L200R, S203L, C219R, C221R, L469P, and R718X) were improperly N-glycosylated and were non-functional due to retention in the endoplasmic reticulum. Thus these mutations have distinct mechanisms by which they could impair ClC-5 function in Dent's disease.


Assuntos
Canais de Cloreto/genética , Cloretos/metabolismo , Códon sem Sentido , Nefropatias/genética , Túbulos Renais Proximais/metabolismo , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Animais , Transporte Biológico/genética , Linhagem Celular , Membrana Celular/metabolismo , Criança , Pré-Escolar , Canais de Cloreto/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Predisposição Genética para Doença , Glicosilação , Humanos , Lactente , Nefropatias/metabolismo , Potenciais da Membrana , Microinjeções , Dados de Sequência Molecular , Fenótipo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Fatores de Risco , Transfecção , Xenopus laevis
11.
Nat Commun ; 9(1): 4769, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425244

RESUMO

GluN3A and GluN3B are glycine-binding subunits belonging to the NMDA receptor (NMDAR) family that can assemble with the GluN1 subunit to form unconventional receptors activated by glycine alone. Functional characterization of GluN1/GluN3 NMDARs has been difficult. Here, we uncover two modalities that have transformative properties on GluN1/GluN3A receptors. First, we identify a compound, CGP-78608, which greatly enhances GluN1/GluN3A responses, converting small and rapidly desensitizing currents into large and stable responses. Second, we show that an endogenous GluN3A disulfide bond endows GluN1/GluN3A receptors with distinct redox modulation, profoundly affecting agonist sensitivity and gating kinetics. Under reducing conditions, ambient glycine is sufficient to generate tonic receptor activation. Finally, using CGP-78608 on P8-P12 mouse hippocampal slices, we demonstrate that excitatory glycine GluN1/GluN3A NMDARs are functionally expressed in native neurons, at least in the juvenile brain. Our work opens new perspectives on the exploration of excitatory glycine receptors in brain function and development.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Dissulfetos , Relação Dose-Resposta a Droga , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Hipocampo , Humanos , Cinética , Camundongos , Modelos Moleculares , Proteínas do Tecido Nervoso/efeitos dos fármacos , Fenômenos Fisiológicos do Sistema Nervoso , Oócitos , Peptídeos/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Proteínas Recombinantes , Xenopus
12.
Nat Commun ; 9(1): 4887, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442888

RESUMO

The original version of this Article omitted the middle initial of the author Jesse E. Hanson. This has now been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 9(1): 4000, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275542

RESUMO

Selective disruption of synaptic drive to inhibitory neurons could contribute to the pathophysiology of various brain disorders. We have previously identified a GluN2A-selective positive allosteric modulator, GNE-8324, that selectively enhances N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in inhibitory but not excitatory neurons. Here, we demonstrate that differences in NMDAR subunit composition do not underlie this selective potentiation. Rather, a higher ambient glutamate level in the synaptic cleft of excitatory synapses on inhibitory neurons is a key factor. We show that increasing expression of glutamate transporter 1 (GLT-1) eliminates GNE-8324 potentiation in inhibitory neurons, while decreasing GLT-1 activity enables potentiation in excitatory neurons. Our results reveal an unsuspected difference between excitatory synapses onto different neuronal types, and a more prominent activation of synaptic NMDARs by ambient glutamate in inhibitory than excitatory neurons. This difference has implications for tonic NMDAR activity/signaling and the selective modulation of inhibitory neuron activity to treat brain disorders.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Regulação Alostérica , Animais , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Neuropharmacology ; 109: 196-204, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27288002

RESUMO

Recent human genetic studies have identified a surprisingly high number of alterations in genes encoding NMDA receptor (NMDAR) subunits in several common brain diseases. Among NMDAR subunits, the widely-expressed GluN2A subunit appears particularly affected, with tens of de novo or inherited mutations associated with neurodevelopmental conditions including childhood epilepsies and cognitive deficits. Despite the increasing identification of NMDAR mutations of clinical interest, there is still little information about the effects of the mutations on receptor and network function. Here we analyze the impact on receptor expression and function of nine GluN2A missense (i.e. single-point) mutations targeting the N-terminal domain, a large regulatory region involved in subunit assembly and allosteric signaling. While several mutations produced no or little apparent effect on receptor expression, gating and pharmacology, two showed a drastic expression phenotype and two resulted in marked alterations in the sensitivity to zinc, a potent allosteric inhibitor of GluN1/GluN2A receptors and modulator of excitatory synaptic transmission. Surprisingly, both increase (GluN2A-R370W) and decrease (GluN2A-P79R) of zinc sensitivity were observed on receptors containing either one or two copies of the mutated subunits. Overexpression of the mutant subunits in cultured rat neurons confirmed the results from heterologous expression. These results, together with previously published data, indicate that disease-causing mutations in NMDARs produce a wide spectrum of receptor alterations, at least in vitro. They also point to a critical role of the zinc-NMDAR interaction in neuronal function and human health.


Assuntos
Mutação de Sentido Incorreto/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Zinco/farmacologia , Animais , Células Cultivadas , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Glicina/metabolismo , Glicina/farmacologia , Células HEK293 , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estrutura Secundária de Proteína , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Xenopus laevis , Zinco/metabolismo
15.
Neuron ; 89(5): 983-99, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26875626

RESUMO

To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.


Assuntos
Modelos Moleculares , Rede Nervosa/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação/genética , Células CHO , Cálcio/metabolismo , Cricetulus , Cristalografia por Raios X , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Células HEK293 , Hipocampo/citologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética
16.
Cardiovasc Res ; 104(3): 489-500, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344366

RESUMO

AIMS: Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. METHODS AND RESULTS: Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. CONCLUSIONS: The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.


Assuntos
Arritmias Cardíacas/etiologia , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Animais , Células Cultivadas , Fibrose , Potenciais da Membrana , Miocárdio/patologia , Técnicas de Patch-Clamp , Ratos Wistar , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA