Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(7): 851-864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099918

RESUMO

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Assuntos
Anticorpos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-33/farmacologia , Linfócitos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo
3.
Nat Immunol ; 17(7): 816-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213690

RESUMO

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Proliferação de Células/genética , Citotoxicidade Imunológica/genética , Vigilância Imunológica , Interferon gama/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Ativação Linfocitária/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
4.
Cell ; 153(4): 896-909, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663785

RESUMO

Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain. Using a genetic strategy we developed, we have ablated one such dimorphic PR-expressing neuronal population located in the ventromedial hypothalamus (VMH). Ablation of these neurons in females greatly diminishes sexual receptivity. Strikingly, the corresponding ablation in males reduces mating and aggression. Our findings reveal the functions of a molecularly defined, sexually dimorphic neuronal population in the brain. Moreover, we show that sexually dimorphic neurons can control distinct sex-typical behaviors in both sexes.


Assuntos
Agressão/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Comportamento Sexual , Animais , Feminino , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo , Comportamento Sexual Animal
5.
Nat Immunol ; 14(9): 959-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852275

RESUMO

Foxp3⁺ regulatory T (Treg) cells are a crucial immunosuppressive population of CD4⁺ T cells, yet the homeostatic processes and survival programs that maintain the Treg cell pool are poorly understood. Here we report that peripheral Treg cells markedly alter their proliferative and apoptotic rates to rapidly restore numerical deficit through an interleukin 2-dependent and costimulation-dependent process. By contrast, excess Treg cells are removed by attrition, dependent on the Bim-initiated Bak- and Bax-dependent intrinsic apoptotic pathway. The antiapoptotic proteins Bcl-xL and Bcl-2 were dispensable for survival of Treg cells, whereas Mcl-1 was critical for survival of Treg cells, and the loss of this antiapoptotic protein caused fatal autoimmunity. Together, these data define the active processes by which Treg cells maintain homeostasis via critical survival pathways.


Assuntos
Apoptose/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Apoptose/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Feminino , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Homeostase/imunologia , Interleucina-2/metabolismo , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais
6.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644507

RESUMO

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proliferação de Células , Células Cultivadas , Análise por Conglomerados , Citometria de Fluxo , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
7.
Cell ; 142(4): 637-46, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20723762

RESUMO

Apoptosis is a conserved cellular pathway that results in the activation of cysteine-aspartyl proteases, or caspases. To dissect the nonredundant roles of the executioner caspase-3, -6, and -7 in orchestrating apoptosis, we have developed an orthogonal protease to selectively activate each isoform in human cells. Our approach uses a split-tobacco etch virus (TEV) protease under small-molecule control, which we call the SNIPer, with caspase alleles containing genetically encoded TEV cleavage sites. These studies reveal that all three caspases are transiently activated but only activation of caspase-3 or -7 is sufficient to induce apoptosis. Proteomic analysis shown here and from others reveals that 20 of the 33 subunits of the 26S proteasome can be cut by caspases, and we demonstrate synergy between proteasome inhibition and dose-dependent caspase activation. We propose a model of proteolytic reciprocal negative regulation with mechanistic implications for the combined clinical use of proteasome inhibitors and proapoptotic drugs.


Assuntos
Apoptose , Caspase 3/metabolismo , Caspase 7/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Engenharia de Proteínas , Caspase 6/metabolismo , Linhagem Celular , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Leupeptinas/farmacologia , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma
8.
Proc Natl Acad Sci U S A ; 119(15): e2120149119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394861

RESUMO

Immunological tolerance is established and maintained by a diverse array of safeguards that work together to protect against autoimmunity. Despite the identification of numerous tolerogenic processes, the basis for cooperation among them remains poorly understood. We sought to identify synergy among several well-defined tolerance mediators that alone provide protection only from mild autoimmune symptoms in C57BL/6 mice: BIM, AIRE, CBL-B, and PD-1. Survey of a range of compound mutant mice revealed that the combined loss of the autoimmune regulator, AIRE, with PD-1 unleashed a spontaneous, lethal autoimmune disease. Pdcd1−/−Aire−/− mice succumbed to cachexia before adulthood, with near-complete destruction of the exocrine pancreas. Such fatal autoimmunity was not observed in Pdcd1−/−Bim−/−, Bim−/−Aire−/−, or Cblb−/−Bim−/− mice, suggesting that the cooperation between AIRE-mediated and PD-1­mediated tolerance was particularly potent. Immune profiling revealed largely normal development of FOXP3+ regulatory T (Treg) cells in Pdcd1−/−Aire−/− mice, yet excessive, early activation of effector T cells. Adoptive transfer experiments demonstrated that autoimmune exocrine pancreatitis was driven by conventional CD4+ T cells and could not be prevented by the cotransfer of Treg cells from wild-type mice. The development of autoimmunity in mixed bone marrow chimeras supported these observations, indicating that failure of recessive tolerance was responsible for disease. These findings reveal a potent tolerogenic axis between AIRE and PD-1 that has implications for our understanding of how immune checkpoint blockade might synergize with subclinical defects in central tolerance to elicit autoimmune disease.


Assuntos
Pancreatite Autoimune , Tolerância Imunológica , Tolerância Periférica , Receptor de Morte Celular Programada 1 , Fatores de Transcrição , Animais , Pancreatite Autoimune/genética , Pancreatite Autoimune/imunologia , Autoimunidade/genética , Tolerância Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Tolerância Periférica/genética , Tolerância Periférica/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/fisiologia , Timo/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteína AIRE
9.
Immunol Cell Biol ; 102(2): 117-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069638

RESUMO

Programmed death receptor 1 (PD-1) is an inhibitory receptor on T cells shown to restrain T-cell proliferation. PD-1 immune checkpoint blockade has emerged as a highly promising approach in cancer treatment. Much of our understanding of the function of PD-1 is derived from in vitro T-cell activation assays. Here we set out to further investigate how T cells integrate inhibitory signals such as PD-1 in vitro using the PD-1 agonist, PD-1 ligand 1 (PD-L1) fusion protein (PD-L1.Fc), coimmobilized alongside anti-CD3 agonist monoclonal antibody (mAb) on plates to deliver PD-1 signals to wild-type and PD-1-/- CD8+ T cells. Surprisingly, we found that the PD-L1.Fc fusion protein inhibited T-cell proliferation independently of PD-1. This PD-L1.Fc inhibition was observed in the presence and absence of CD28 and interleukin-2 signaling. Binding of PD-L1.Fc was restricted to PD-1-expressing T cells and thus inhibition was not mediated by the interaction of PD-L1.Fc with CD80 or other yet unknown binding partners. Furthermore, a similar PD-1-independent reduction of T-cell proliferation was observed with plate-bound PD-L2.Fc. Hence, our results suggest that the coimmobilization of PD-1 ligand fusion proteins with anti-CD3 mAb leads to a reduction of T-cell engagement with plate-bound anti-CD3 mAb. This study demonstrates a nonspecific mechanism of T-cell inhibition when PD-L1.Fc or PD-L2.Fc fusion proteins are delivered in a plate-bound coimmobilization assay and highlights the importance of careful optimization of assay systems and reagents when interpreting their influence on T-cell proliferation.


Assuntos
Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Ligantes , Proliferação de Células , Receptores de Morte Celular/metabolismo
10.
Blood ; 140(20): 2127-2141, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709339

RESUMO

Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , NF-kappa B , Resistencia a Medicamentos Antineoplásicos/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Recidiva , Antineoplásicos/uso terapêutico
11.
Cereb Cortex ; 33(8): 4626-4644, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36169578

RESUMO

Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.


Assuntos
Giro do Cíngulo , Microglia , Animais , Macaca mulatta/metabolismo , Microglia/metabolismo , Giro do Cíngulo/metabolismo , Matriz Extracelular/metabolismo , Parvalbuminas/metabolismo , Transtornos da Memória
12.
Genes Dev ; 30(10): 1240-50, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27198225

RESUMO

Due to the myriad interactions between prosurvival and proapoptotic members of the Bcl-2 family of proteins, establishing the mechanisms that regulate the intrinsic apoptotic pathway has proven challenging. Mechanistic insights have primarily been gleaned from in vitro studies because genetic approaches in mammals that produce unambiguous data are difficult to design. Here we describe a mutation in mouse and human Bak that specifically disrupts its interaction with the prosurvival protein Bcl-xL Substitution of Glu75 in mBak (hBAK Q77) for leucine does not affect the three-dimensional structure of Bak or killing activity but reduces its affinity for Bcl-xL via loss of a single hydrogen bond. Using this mutant, we investigated the requirement for physical restraint of Bak by Bcl-xL in apoptotic regulation. In vitro, Bak(Q75L) cells were significantly more sensitive to various apoptotic stimuli. In vivo, loss of Bcl-xL binding to Bak led to significant defects in T-cell and blood platelet survival. Thus, we provide the first definitive in vivo evidence that prosurvival proteins maintain cellular viability by interacting with and inhibiting Bak.


Assuntos
Apoptose/genética , Plaquetas/citologia , Linfócitos T/citologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética
13.
J Neurosci ; 42(22): 4505-4516, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477900

RESUMO

Hippocampal gamma and theta oscillations are associated with mnemonic and navigational processes and adapt to changes in the behavioral state of an animal to optimize spatial information processing. It has been shown that locomotor activity modulates gamma and theta frequencies in rats, although how age alters this modulation has not been well studied. Here, we examine gamma and theta local-field potential and place cell activity in the hippocampus CA1 region of young and old male rats as they performed a spatial eye-blink conditioning task across 31 d. Although mean gamma frequency was similar in both groups, gamma frequency increased with running speed at a slower rate in old animals. By contrast, theta frequencies scaled with speed similarly in both groups but were lower across speeds in old animals. Although these frequencies scaled equally well with deceleration and speed, acceleration was less correlated with gamma frequency in both age groups. Additionally, spike phase-locking to gamma, but not theta, was greater in older animals. Finally, aged rats had reduced within-field firing rates but greater spatial information per spike within the field. These data support a strong relationship between locomotor behavior and local-field potential activity and suggest that age significantly affects this relationship. Furthermore, observed changes in CA1 place cell firing rates and information content lend support to the hypothesis that age may result in more general and context-invariant hippocampal representations over more detailed information. These results may explain the observation that older adults tend to recall the gist of an experience rather than the details.SIGNIFICANCE STATEMENT Hippocampal oscillations and place cell activity are sensitive to sensorimotor input generated from active locomotion, yet studies of aged hippocampal function often do not account for this. By considering locomotion and spatial location, we identify novel age-associated differences in the scaling of oscillatory activity with speed, spike-field coherence, spatial information content, and within-field firing rates of CA1 place cells. These results indicate that age has an impact on the relationship between locomotion and hippocampal oscillatory activity, perhaps indicative of alterations to afferent input. These data also support the hypothesis that aged hippocampal place cells, compared with young, may more often represent more general spatial information. If true, these results may help explain why older humans tend to recall less specific and more gist-like information.


Assuntos
Região CA1 Hipocampal , Células de Lugar , Animais , Masculino , Ratos , Potenciais de Ação , Hipocampo , Ritmo Teta
14.
J Neurosci ; 42(19): 3896-3918, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35396327

RESUMO

During aging, microglia produce inflammatory factors, show reduced tissue surveillance, altered interactions with synapses, and prolonged responses to CNS insults, positioning these cells to have profound impact on the function of nearby neurons. We and others recently showed that microglial attributes differ significantly across brain regions in young adult mice. However, the degree to which microglial properties vary during aging is largely unexplored. Here, we analyze and manipulate microglial aging within the basal ganglia, brain circuits that exhibit prominent regional microglial heterogeneity and where neurons are vulnerable to functional decline and neurodegenerative disease. In male and female mice, we demonstrate that VTA and SNc microglia exhibit unique and premature responses to aging, compared with cortex and NAc microglia. This is associated with localized VTA/SNc neuroinflammation that may compromise synaptic function as early as middle age. Surprisingly, systemic inflammation, local neuron death, and astrocyte aging do not appear to underlie these early aging responses of VTA and SNc microglia. Instead, we found that microglial lysosome status was tightly linked to early aging of VTA microglia. Microglial ablation/repopulation normalized VTA microglial lysosome swelling and suppressed increases in VTA microglial density during aging. In contrast, CX3CR1 receptor KO exacerbated VTA microglial lysosome rearrangements and VTA microglial proliferation during aging. Our findings reveal a previously unappreciated regional variation in onset and magnitude of microglial proliferation and inflammatory factor production during aging and highlight critical links between microglial lysosome status and local microglial responses to aging.SIGNIFICANCE STATEMENT Microglia are CNS cells that are equipped to regulate neuronal health and function throughout the lifespan. We reveal that microglia in select brain regions begin to proliferate and produce inflammatory factors in late middle age, months before microglia in other brain regions. These findings demonstrate that CNS neuroinflammation during aging is not uniform. Moreover, they raise the possibility that local microglial responses to aging play a critical role in determining which populations of neurons are most vulnerable to functional decline and neurodegenerative disease.


Assuntos
Microglia , Doenças Neurodegenerativas , Animais , Feminino , Masculino , Camundongos , Doenças Neuroinflamatórias , Neurônios/fisiologia , Sinapses
15.
Nat Immunol ; 13(2): 181-7, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179202

RESUMO

Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.


Assuntos
RNA Helicases DEAD-box/imunologia , MicroRNAs/imunologia , Receptor de Interferon alfa e beta/imunologia , Ribonuclease III/imunologia , Timo/imunologia , Animais , Artrite/genética , Artrite/imunologia , RNA Helicases DEAD-box/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Masculino , Camundongos , Ribonuclease III/genética , Timo/citologia
16.
J Immunol ; 207(2): 363-370, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644259

RESUMO

T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development.


Assuntos
Diferenciação Celular/imunologia , Linfócitos T/imunologia , Animais , Humanos , Análise de Sequência de RNA/métodos , Timo/imunologia
17.
Proc Natl Acad Sci U S A ; 117(29): 17195-17203, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32606248

RESUMO

The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional therapeutic modalities are needed to overcome this deficiency. Here, the identification and characterization of a natural product, WDB002, reveals a therapeutic modality that dramatically expands the currently accepted limits of druggability. WDB002, in complex with the FK506-binding protein (FKBP12), potently and selectively binds the human centrosomal protein 250 (CEP250), resulting in disruption of CEP250 function in cells. The recognition mode is unprecedented in that the targeted domain of CEP250 is a coiled coil and is topologically featureless, embodying both a structural motif and surface topology previously considered on the extreme limits of "undruggability" for an intracellular target. Structural studies reveal extensive protein-WDB002 and protein-protein contacts, with the latter being distinct from those seen in FKBP12 ternary complexes formed by FK506 and rapamycin. Outward-facing structural changes in a bound small molecule can thus reprogram FKBP12 to engage diverse, otherwise "undruggable" targets. The flat-targeting modality demonstrated here has the potential to expand the druggable target range of small-molecule therapeutics. As CEP250 was recently found to be an interaction partner with the Nsp13 protein of the SARS-CoV-2 virus that causes COVID-19 disease, it is possible that WDB002 or an analog may exert useful antiviral activity through its ability to form high-affinity ternary complexes containing CEP250 and FKBP12.


Assuntos
Actinobacteria/genética , Antivirais/farmacologia , Genoma Bacteriano , Macrolídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 1A de Ligação a Tacrolimo/química , Proteína 1A de Ligação a Tacrolimo/metabolismo , Actinobacteria/metabolismo , Sequência de Aminoácidos , Antivirais/química , Antivirais/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Células HEK293 , Humanos , Macrolídeos/química , Macrolídeos/metabolismo , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Sirolimo/química , Sirolimo/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Immunol Cell Biol ; 100(8): 585-587, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35848928

RESUMO

Here, we highlight a recent publication by Whyte et al. that reveals diverse immune outcomes of interleukin (IL)-2 expression in distinct microenvironments. Their definition of context-dependent IL-2 networks paves the way for the development of tissue-specific therapies that enlist the potent immuno-modulatory activity of IL-2.


Assuntos
Interleucina-2
19.
J Immunol ; 205(5): 1207-1216, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32747505

RESUMO

MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Linfócitos T Reguladores/imunologia , Ubiquitinação/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Timo/imunologia , Ubiquitina/imunologia , Ubiquitina-Proteína Ligases/imunologia
20.
Proc Natl Acad Sci U S A ; 116(52): 26247-26254, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871147

RESUMO

The use of animal models in brain aging research has led to numerous fundamental insights into the neurobiological processes that underlie changes in brain function associated with normative aging. Macaque monkeys have become the predominant nonhuman primate model system in brain aging research due to their striking similarities to humans in their behavioral capacities, sensory processing abilities, and brain architecture. Recent public concern about nonhuman primate research has made it imperative to attempt to clearly articulate the potential benefits to human health that this model enables. The present review will highlight how nonhuman primates provide a critical bridge between experiments conducted in rodents and development of therapeutics for humans. Several studies discussed here exemplify how nonhuman primate research has enriched our understanding of cognitive and sensory decline in the aging brain, as well as how this work has been important for translating mechanistic implications derived from experiments conducted in rodents to human brain aging research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA