Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 478(13): 2601-2617, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34142705

RESUMO

NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH- to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.


Assuntos
Antibacterianos/metabolismo , Benzoquinonas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Nitrofurantoína/metabolismo , Nitrorredutases/metabolismo , Antibacterianos/química , Benzoquinonas/química , Sítios de Ligação/genética , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mononucleotídeo de Flavina/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , NADP/metabolismo , Nitrofurantoína/química , Nitrorredutases/química , Nitrorredutases/genética , Oxirredução , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
2.
J Cell Physiol ; 235(5): 4587-4593, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31643084

RESUMO

Regenerative medicine is a multidisciplinary field that combines engineering and life science principles to promote regeneration, potentially restoring the physiological condition in diseased tissues. Specifically, the developments of complex grafts enhance the intrinsic regenerative capacity of the host by altering its environment. Autologous micrografts obtained through Rigenera® micrografting technology are able to promote derma and bone regeneration. Androgenetic alopecia (AGA) leads to a progressive thinning of scalp hair affecting 60-70% of the adult population worldwide. Pharmacological treatment offers moderate results and hair transplantation represents the only permanent treatment option. The aim of this study was to demonstrate the role of dermis micrografting in the treatment of AGA by clinical and histological evaluations after 4, 6, and 12 months. Hair growth and density were improved at all indicated times. Those outcomes were also confirmed by the TrichoScan® analysis, reporting an increase of total hair count and density with an increase and reduction of anagen and telogen phases, respectively. Scalp dermoscopic analysis showed an improvement of hair density and histological analysis indicated a clear amelioration of the scalp, development of hair follicles, and a beginning of cuticle formation. Collectively, those results suggest a possible use of the micrografts as a novel therapeutic option in the management of AGA.


Assuntos
Alopecia/cirurgia , Folículo Piloso/transplante , Regeneração , Couro Cabeludo/transplante , Transplante de Células-Tronco , Alopecia/fisiopatologia , Feminino , Humanos , Masculino , Fatores de Tempo , Transplante Autólogo , Resultado do Tratamento
3.
J Cell Physiol ; 232(3): 548-555, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27277190

RESUMO

Human population is facing a revolutionary change in the demographic structure with an increasing number of elderly people requiring an unmet need to ensure a smooth aging process and dental care is certainly an important aspect that has to be considered. To date, dentistry has been conservative and the need of transferring the scientific models of regenerative dentistry into clinical practice is becoming a necessity. The aim of this study was to characterize the differentiation commitment (in vitro) and the clinical grafting ability (in vivo) of a population of progenitor stem cells obtained after mechanical digestion of dental pulp with an innovative system recently developed. This approach was successfully used in previous studies to obtain a clinical-grade ready to use dental pulp fragments that could be grafted in autologous tissues to obtain bone. We are thus showing that micro grafts resulting from mechanical digestion contain stem cells with a mesenchymal phenotype, able to differentiate toward different cell types and to generate new bone in patients. We are providing data for the establishment of standardized and routinely oral surgery approaches, having outlined the cellular properties of human stem cells obtained from the dental pulp. This method can represent a valid tool for both regenerative medicine and tissue engineering purposes not only applicable to the cranio-maxillofacial region but, likely, to different bone pathologies for a fastening and healing recovering of patients. J. Cell. Physiol. 232: 548-555, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Estresse Mecânico , Adipogenia , Adolescente , Adulto , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Imunofluorescência , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Osteócitos/citologia , Osteócitos/metabolismo , Osteogênese , Adulto Jovem
4.
Int Wound J ; 14(1): 277-281, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27126653

RESUMO

The effective management of post-operative wounds is important to prevent potential complications such as surgical-site infections and wound dehiscence. The purpose of this study was to treat wound dehiscence in elderly patients who were subjected to orthopaedic surgical interventions. The dehisced wounds were treated with autologous micro-grafts obtained using a promising CE-certified medical device called Rigeneracons. This instrument is a biological disruptor of human tissues able to specifically select progenitor cells that, as already reported in previous studies, maintain high cell viability but mainly have a high regenerative potential, allowing the repair of damaged tissues. Autologous micro-grafts obtained by Rigeneracons are ready to use and can be applied alone or in combination with biological scaffolds directly on the injured area. We observed in our patients a complete remission of dehisced wounds, on average, after 30 days from micro-grafts application and a total wound re-epithelialisation after 1 year from the surgical intervention. In conclusion, although we reported only three patients, autologous micro-grafts can be considered a promising approach for the treatment of dehisced wounds, improving the wound-healing process and in general the patient's quality of life without using other dressings.


Assuntos
Procedimentos Ortopédicos/normas , Reepitelização/fisiologia , Transplante de Pele/métodos , Deiscência da Ferida Operatória/prevenção & controle , Infecção da Ferida Cirúrgica/prevenção & controle , Cicatrização/fisiologia , Ferimentos e Lesões/cirurgia , Idoso , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Resultado do Tratamento
5.
J Cell Physiol ; 231(3): 607-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26206324

RESUMO

The periosteum is a specialized connective tissue containing multipotent stem cells capable of bone formation. In this study, we aimed at demonstrating that human oral periosteal cells derived from three different oral sites (upper vestibule, lower vestibule, and hard palate) represent an innovative cell source for maxillo-facial tissue engineering applications in terms of accessibility and self-commitment towards osteogenic lineage. Periosteal cells (PCs) were isolated from patients with different ages (20-30 yy, 40-50 yy, 50-60 yy); we then analyzed the in vitro proliferation capacity and the bone self-commitment of cell clones culturing them without any osteogenic supplement to support their differentiation. We found that oral PCs, independently of their origin and age of patients, are mesenchymal stem cells with stem cell characteristics (clonogenical and proliferative activity) and that, even in absence of any osteogenic induction, they undertake the osteoblast lineage after 45 days of culture. These results suggest that oral periosteal cells could replace mesenchymal cells from bone marrow in oral tissue-engineering applications.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese/fisiologia , Periósteo/citologia , Adulto , Medula Óssea/metabolismo , Separação Celular , Humanos , Pessoa de Meia-Idade , Engenharia Tecidual/métodos , Adulto Jovem
6.
J Cell Physiol ; 230(10): 2299-303, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25728337

RESUMO

Autologous graft is considered the gold standard of graft materials; however, this approach is still limited due to both small amount of tissue that can be collected and to reduced cell viability of cells that can be obtained. The aim of this preliminary study was to demonstrate the efficacy of an innovative medical device called Rigeneracons® (CE certified Class I) to provide autologous micro-grafts immediately available to be used in the clinical practice. Moreover, Rigeneracons® is an instrument able to create micro-grafts enriched of progenitors cells which maintain their regenerative and differentiation potential. We reported preliminary data about viability cell of samples derived from different kind of human tissues, such as periosteum, cardiac atrial appendage biopsy, and lateral rectus muscle of eyeball and disaggregated by Rigeneracons®. In all cases we observed that micro-grafts obtained by Rigeneracons® displayed high cell viability. Furthermore, by cell characterization of periosteum samples, we also evidenced an high positivity to mesenchymal cell markers, suggesting an optimal regenerative potential.


Assuntos
Transplante Ósseo/instrumentação , Células-Tronco Mesenquimais/citologia , Periósteo/citologia , Transplante Autólogo/instrumentação , Transplante Homólogo/instrumentação , Sobrevivência Celular/fisiologia , Humanos , Transplante Autólogo/métodos
7.
Immun Ageing ; 10(1): 15, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23618527

RESUMO

Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by coordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysiruption with consequent impact on longevity processes.

8.
Immun Ageing ; 10(1): 41, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24498895

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative disorder affecting up to one third of individuals reaching the age of 80. Different integrated responses exist in the brain to detect oxidative stress which is controlled by several genes termed Vitagenes. Vitagenes encode for cytoprotective heat shock proteins (Hsp), as well as thioredoxin, sirtuins and uncouple proteins (UCPs). In the present study we evaluate stress response mechanisms in plasma and lymphocytes of AD patients, as compared to controls, in order to provide evidence of an imbalance of oxidant/antioxidant mechanisms and oxidative damage in AD patients and the possible protective role of vitagenes.We found that the levels of Sirt-1 and Sirt-2 in AD lymphocytes were significantly higher than in control subjects. Interestingly, analysis of plasma showed in AD patients increased expression of Trx, a finding associated with reduced expression of UCP1, as compared to control group.This finding can open up new neuroprotective strategies, as molecules inducing this defense mechanisms can represent a therapeutic target to minimize the deleterious consequences associated to oxidative stress, such as in brain aging and neurodegenerative disorders.

9.
FEBS Lett ; 596(18): 2425-2440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35648111

RESUMO

Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.


Assuntos
Proteínas de Escherichia coli , Pró-Fármacos , Antibacterianos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroquinonas , Hidroxilaminas , Cinética , NAD/metabolismo , NADP/metabolismo , Niacinamida , Nitrorredutases/química , Nitrorredutases/metabolismo , Fosfatos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Quinonas
10.
Antibiotics (Basel) ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551343

RESUMO

Achromobacter xylosoxidans is a Gram-negative aerobic opportunistic bacterium, belonging to the order of Burkholderiales, that can cause infections of virtually all body districts in patients with underlying diseases. However, A. xylosoxidans has rarely been associated with infective endocarditis. The treatment of A. xylosoxidans infections is complicated by both intrinsic and acquired resistance. Here we report on a case of aortic endocarditis by A. xylosoxidans in a Non-Hodgkin lymphoma patient treated with a combination of cefiderocol and other antibiotics, and summarize the available literature.

11.
J Clin Med ; 10(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477260

RESUMO

(1) Background: Focal chondral defects of the knee can significantly impair patient quality of life. Although different options are available, they are still not conclusive and have several limitations. The aim of this study was to evaluate the role of autologous cartilage micrografts in the treatment of knee chondropathy. (2) Methods: Eight patients affected by knee chondropathy were evaluated before and after 6 months and 3 years following autologous cartilage micrografts by magnetic resonance imaging (MRI) for cartilage measurement and clinical assessment. (3) Results: All patients recovered daily activities, reporting pain reduction without the need for analgesic therapy; Oxford Knee Score (OKS) was 28.4 ± 6 and 40.8 ± 6.2 and visual analogue scale (VAS) was 5.5 ± 1.6 and 1.8 ± 0.7 before and after 6 months following treatment, respectively. Both scores remained stable after 3 years. Lastly, a significant improvement of the cartilage thickness was observed using MRI after 3 years. (4) Conclusions: Autologous cartilage micrografts can promote the formation of new cartilage, and could be a valid approach for the treatment of knee chondropathy.

12.
Antibiotics (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34943688

RESUMO

The aim of this study is to describe the features, the outcomes, and the clinical issues related to Remdesivir administration of a cohort of 220 patients (pts) with COVID-19 hospitalized throughout the last two pandemic waves in Italy. One hundred and nine pts were enrolled from 1 September 2020, to 28 February 2021 (Group A) and 111 from 1 March to 30 September 2021 (Group B). Notably, no differences were reported between the two groups neither in the timing of hospitalization. nor in the timing of Remdesivir administration from symptoms onset. Remarkably, a higher proportion of pts with severe COVID-19 was observed in Group B (25% vs. 10%, p < 0.001). At univariate and multivariate analysis, rather than the timing of Remdesivir administration, age, presence of coexisting conditions, D-dimers, and O2 flow at admission correlated positively to progression to non-invasive ventilation, especially for patients in Group B. However, the rate of admission in the Intensive Care Unit and/or death was comparable in the two groups (7% vs. 4%). Negligible variations in serum GOT, GPT, GGT, and eGFR levels were detected. A mean reduction in heart rate was noticed within the first three days of antiviral treatment (p < 0.001). Low rate of ICU admission, high rate of clinical recovery, and good drug safety were observed in COVID-19 patients treated with Remdesivir during two diverse pandemic waves.

13.
Drug News Perspect ; 23(3): 175-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20440419

RESUMO

Advances in the understanding of the intriguing properties of stem cells are prompting the development of new therapeutic approaches in oncology. Stemness is a crucial condition for the homeostasis of the human body. Nevertheless, pathways that regulate self-renewal and cell fate of normal stem cells, such as Wnt and hedgehog, are also involved in the regulation of cancer stem cells and tumor growth and progression, and may thus represent novel therapeutic targets in cancer treatment. In addition, the ability of stem cells to self-renew, migrate to tumor sites and differentiate into multiple cell types makes them perfect candidates for being used as tools for delivering therapeutic genes and proteins and as drug vectors to eliminate malignant cells.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Diferenciação Celular , Humanos , Células-Tronco Neoplásicas/metabolismo
15.
Eur Cell Mater ; 18: 75-83, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19908196

RESUMO

In this study we used a biocomplex constructed from dental pulp stem/progenitor cells (DPCs) and a collagen sponge scaffold for oro-maxillo-facial (OMF) bone tissue repair in patients requiring extraction of their third molars. The experiments were carried out according to our Internal Ethical Committee Guidelines and written informed consent was obtained from the patients. The patients presented with bilateral bone reabsorption of the alveolar ridge distal to the second molar secondary to impaction of the third molar on the cortical alveolar lamina, producing a defect without walls, of at least 1.5 cm in height. This clinical condition does not permit spontaneous bone repair after extraction of the third molar, and eventually leads to loss also of the adjacent second molar. Maxillary third molars were extracted first for DPC isolation and expansion. The cells were then seeded onto a collagen sponge scaffold and the obtained biocomplex was used to fill in the injury site left by extraction of the mandibular third molars. Three months after autologous DPC grafting, alveolar bone of patients had optimal vertical repair and complete restoration of periodontal tissue back to the second molars, as assessed by clinical probing and X-rays. Histological observations clearly demonstrated the complete regeneration of bone at the injury site. Optimal bone regeneration was evident one year after grafting. This clinical study demonstrates that a DPC/collagen sponge biocomplex can completely restore human mandible bone defects and indicates that this cell population could be used for the repair and/or regeneration of tissues and organs.


Assuntos
Perda do Osso Alveolar/cirurgia , Regeneração Óssea , Polpa Dentária/citologia , Mandíbula/cirurgia , Transplante de Células-Tronco/métodos , Engenharia Tecidual/métodos , Colágeno , Feminino , Regeneração Tecidual Guiada Periodontal , Humanos , Masculino , Procedimentos de Cirurgia Plástica , Extração Dentária/métodos , Dente Impactado/complicações
16.
Stem Cells Int ; 2019: 9843407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582991

RESUMO

The aim of the study was the objective assessment of the effectiveness of a microfragmented dermal extract obtained with Rigenera™ technology in promoting the wound healing process in an in vivo homogeneous experimental human acute surgical wound model. The study included 20 patients with 24 acute postsurgical soft tissue loss and a planned sequential two-stage repair with a dermal substitute and an autologous split-thickness skin graft. Each acute postsurgical soft tissue loss was randomized to be treated either with an Integra® dermal substitute enriched with the autologous dermal micrografts obtained with Rigenera™ technology (group A-Rigenera™ protocol) or with an Integra® dermal substitute only (group B-control). The reepithelialization rate in the wounds was assessed in both groups at 4 weeks through digital photography with the software "ImageJ." The dermal cell suspension enrichment with the Rigenera™ technology was considered effective if the reepithelialized area was higher than 25% of the total wound surface as this threshold was considered far beyond the expected spontaneous reepithelialization rate. In the Rigenera™ protocol group, the statistical analysis failed to demonstrate any significant difference vs. the controls. The old age of the patients likely influenced the outcome as the stem cell regenerative potential is reduced in the elderly. A further explanation for the unsatisfying results of our trial might be the inadequate amount of dermal stem cells used to enrich the dermal substitutes. In our study, we used a 1 : 200 donor/recipient site ratio to minimize donor site morbidity. The gross dimensional disparity between the donor and recipient sites and the low concentration of dermal mesenchymal stromal stem cells might explain the poor epithelial proliferative boost observed in our study. A potential option in the future might be preconditioning of the dermal stem cell harvest with senolytic active principles that would fully enhance their regenerative potential. This trial is registered with trial protocol number NCT03912675.

17.
J Cell Physiol ; 214(1): 166-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17565721

RESUMO

In this study, we have observed dental pulp stem cells (SBP-DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP-DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone-specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell-scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Ácido Láctico/química , Ácido Poliglicólico/química , Polímeros/química , Células-Tronco/citologia , Engenharia Tecidual/métodos , Titânio/química , Adulto , Técnicas de Cultura de Células , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Gengiva/citologia , Histocitoquímica , Humanos , Técnicas de Cultura de Órgãos , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteoblastos/ultraestrutura , Osteogênese/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células-Tronco/fisiologia , Células-Tronco/ultraestrutura , Propriedades de Superfície , Fatores de Tempo
18.
Stem Cell Rev ; 4(1): 21-6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18300003

RESUMO

Human tissues are different in term of regenerative properties. Stem cells are a promising tool for tissue regeneration, thanks to their particular characteristics of proliferation, differentiation and plasticity. Several "loci" or "niches" within the adult human body are colonized by a significant number of stem cells. However, access to these potential collection sites often is a limiting point. The interaction with biomaterials is a further point that needs to be considered for the therapeutic use of stem cells. Dental pulp stem cells (DPSCs) have been demonstrated to answer all of these issues: access to the collection site of these cells is easy and produces very low morbidity; extraction of stem cells from pulp tissue is highly efficiency; they have an extensive differentiation ability; and the demonstrated interactivity with biomaterials makes them ideal for tissue reconstruction. SBP-DPSCs are a multipotent stem cell subpopulation of DPSCs which are able to differentiate into osteoblasts, synthesizing 3D woven bone tissue chips in vitro and that are capable to synergically differentiate into osteoblasts and endotheliocytes. Several studied have been performed on DPSCs and they mainly found that these cells are multipotent stromal cells that can be safety cryopreserved, used with several scaffolds, that can extensively proliferate, have a long lifespan and build in vivo an adult bone with Havers channels and an appropriate vascularization. A definitive proof of their ability to produce dentin has not been yet done. Interestingly, they seem to possess immunoprivileges as they can be grafted into allogenic tissues and seem to exert anti-inflammatory abilities, like many other mesenchymal stem cells. The easy management of dental pulp stem cells make them feasible for use in clinical trials on human patients.


Assuntos
Regeneração Óssea , Polpa Dentária/citologia , Células-Tronco Multipotentes , Diferenciação Celular , Proliferação de Células , Criopreservação , Polpa Dentária/fisiologia , Dentina/metabolismo , Humanos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Transplante de Células-Tronco , Células-Tronco , Engenharia Tecidual
19.
Front Cell Dev Biol ; 5: 87, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021982

RESUMO

Sinus lift augmentation is a procedure required for the placement of a dental implant, whose success can be limited by the quantity or quality of available bone. To this purpose, the first aim of the current study was to evaluate the ability of autologous periosteum-derived micrografts and Poly(lactic-co-glycolic acid) (PLGA) supplemented with hydroxyl apatite (HA) to induce bone augmentation in the sinus lift procedure. Secondly, we compared the micrograft's behavior with respect to biomaterial alone, including Bio-Oss® and PLGA/HA, commercially named Alos. Sinus lift procedure was performed on 24 patients who required dental implants and who, according to the study design and procedure performed, were divided into three groups: group A (Alos + periosteum-derived micrografts); group B (Alos alone); and group C (Bio-Oss® alone). Briefly, in group A, a small piece of periosteum was collected from each patient and mechanically disaggregated by Rigenera® protocol using the Rigeneracons medical device. This protocol allowed for the obtainment of autologous micrografts, which in turn were used to soak the Alos scaffold. At 6 months after the sinus lift procedure and before the installation of dental implants, histological and radiographic evaluations in all three groups were performed. In group A, where sinus lift augmentation was performed using periosteum-derived micrografts and Alos, the bone regeneration was much faster than in the control groups where it was performed with Alos or Bio-Oss® alone (groups B and C, respectively). In addition, the radiographic evaluation in the patients of group A showed a radio-opacity after 4 months, while after 6 months, the prosthetic rehabilitation was improved and was maintained after 2 years post-surgery. In summary, we report on the efficacy of periosteum-derived micrografts and Alos to augment sinus lift in patients requiring dental implants. This efficacy is supported by an increased percentage of vital mineralized tisssue in the group treated with both periosteum-derived micrografts and Alos, with respect to the control group of Alos or Bio-Oss® alone, as confirmed by histological analysis and radiographic evaluations at 6 months from treatment.

20.
Stem Cell Rev Rep ; 13(1): 139-148, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27738884

RESUMO

BACKGROUND: The etiology of non-healing ulcers depends on both systemic and local factors. The introduction of advanced dressing, negative wound therapy and compression therapy have undoubtedly improved clinical outcomes. The principal aim of study was to demonstrate the efficacy of dermal micrografts in the treatment of ulcers with different etiologies. The second aim was to investigate in vitro the action of micrografts in the regenerative process. METHODS: The dermal micro-grafts were obtained from mechanical disaggregation of small pieces of skin tissue through a medical device called Rigeneracons. RESULTS: We observed in vivo the ability of dermal autologous micrografts to improve the healing of venous, diabetic, pressure and post-traumatic ulcers after few week of treatment accomplished in general with a better quality of life for the patients. In vitro results showed that these micrografts express mesenchymal stem cells (MSCS) marker such as CD34, CD73, CD90 and CD105, and are able to form a viable and proliferative biocomplex with collagen sponge. Finally, the site of ulcers displayed a different expression of epidermal growth factors, insulin-like growth factors, platelet-derived growth factors and their receptors and tumor necrosis factor-ß with respect to healthy skin samples. CONCLUSION: We reported a good outcome for the treatment of chronic ulcers using dermal autologous micrografts. Finally, we suggest that the positivity to MSCs markers and the ability to interact with a scaffold can play a key role in their regenerative properties.


Assuntos
Derme/transplante , Regeneração , Úlcera Cutânea/fisiopatologia , Úlcera Cutânea/cirurgia , 5'-Nucleotidase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD34/metabolismo , Autoenxertos , Biomarcadores/metabolismo , Doença Crônica , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Medicina Regenerativa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Pele/métodos , Úlcera Cutânea/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA