Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hepatology ; 63(5): 1455-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26474390

RESUMO

UNLABELLED: Adenoviral vectors encoding hepatitis C virus (HCV) nonstructural (NS) proteins induce multispecific, high-magnitude, durable CD4(+) and CD8(+) T-cell responses in healthy volunteers. We assessed the capacity of these vaccines to induce functional HCV-specific immune responses and determine T-cell cross-reactivity to endogenous virus in patients with chronic HCV infection. HCV genotype 1-infected patients were vaccinated using heterologous adenoviral vectors (ChAd3-NSmut and Ad6-NSmut) encoding HCV NS proteins in a dose escalation, prime-boost regimen, with and without concomitant pegylated interferon-α/ribavirin therapy. Analysis of immune responses ex vivo used human leukocyte antigen class I pentamers, intracellular cytokine staining, and fine mapping in interferon-γ enzyme-linked immunospot assays. Cross-reactivity of T cells with population and endogenous viral variants was determined following viral sequence analysis. Compared to healthy volunteers, the magnitude of HCV-specific T-cell responses following vaccination was markedly reduced. CD8(+) HCV-specific T-cell responses were detected in 15/24 patients at the highest dose, whereas CD4(+) T-cell responses were rarely detectable. Analysis of the host circulating viral sequence showed that T-cell responses were rarely elicited when there was sequence homology between vaccine immunogen and endogenous virus. In contrast, T cells were induced in the context of genetic mismatch between vaccine immunogen and endogenous virus; however, these commonly failed to recognize circulating epitope variants and had a distinct partially functional phenotype. Vaccination was well tolerated but had no significant effect on HCV viral load. CONCLUSION: Vaccination with potent HCV adenoviral vectored vaccines fails to restore T-cell immunity except where there is genetic mismatch between vaccine immunogen and endogenous virus; this highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure with implications for cancer and other persistent infections.


Assuntos
Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Linfócitos T/imunologia , Vacinas contra Hepatite Viral/imunologia , Adenoviridae/genética , Adulto , Idoso , Sequência de Aminoácidos , Epitopos de Linfócito T , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Interferon-alfa/administração & dosagem , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polietilenoglicóis/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Riboflavina/administração & dosagem , Vacinação
2.
Mol Ther ; 22(5): 1039-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24476798

RESUMO

Despite viral vectors being potent inducers of antigen-specific T cells, strategies to further improve their immunogenicity are actively pursued. Of the numerous approaches investigated, fusion of the encoded antigen to major histocompatibility complex class II-associated invariant chain (Ii) has been reported to enhance CD8(+) T-cell responses. We have previously shown that adenovirus vaccine encoding nonstructural (NS) hepatitis C virus (HCV) proteins induces potent T-cell responses in humans. However, even higher T-cell responses might be required to achieve efficacy against different HCV genotypes or therapeutic effect in chronically infected HCV patients. In this study, we assessed fusion of the HCV NS antigen to murine and human Ii expressed by the chimpanzee adenovirus vector ChAd3 or recombinant modified vaccinia Ankara in mice and nonhuman primates (NHPs). A dramatic increase was observed in outbred mice in which vaccination with ChAd3 expressing the fusion antigen resulted in a 10-fold increase in interferon-γ(+) CD8(+) T cells. In NHPs, CD8(+) T-cell responses were enhanced and accelerated with vectors encoding the Ii-fused antigen. These data show for the first time that the enhancement induced by vector vaccines encoding li-fused antigen was not species specific and can be translated from mice to NHPs, opening the way for testing in humans.


Assuntos
Antígenos Virais/imunologia , Genes MHC da Classe II/imunologia , Hepacivirus/imunologia , Hepatite C/terapia , Proteínas Recombinantes de Fusão/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Diferenciação de Linfócitos B/uso terapêutico , Antígenos Virais/genética , Antígenos Virais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Hepatite C/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/uso terapêutico , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Pan troglodytes , Proteínas Recombinantes de Fusão/uso terapêutico , Vacinas/imunologia
3.
Virus Evol ; 10(1): veae031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756986

RESUMO

The highly pathogenic avian influenza viruses of clade 2.3.4.4b have caused unprecedented deaths in South American wild birds, poultry, and marine mammals. In September 2023, pinnipeds and seabirds appeared dead on the Uruguayan Atlantic coast. Sixteen influenza virus strains were characterized by real-time reverse transcription PCR and genome sequencing in samples from sea lions (Otaria flavescens), fur seals (Arctocephalus australis), and terns (Sterna hirundinacea). Phylogenetic and ancestral reconstruction analysis showed that these strains have pinnipeds most likely as the ancestral host, representing a recent introduction of clade 2.3.4.4b in Uruguay. The Uruguayan and closely related strains from Peru (sea lions) and Chile (sea lions and a human case) carry mammalian adaptative residues 591K and 701N in the viral polymerase basic protein 2 (PB2). Our findings suggest that clade 2.3.4.4b strains in South America may have spread from mammals to mammals and seabirds, revealing a new transmission route.

4.
Mol Ther Methods Clin Dev ; 28: 396-411, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36910588

RESUMO

Gene therapy of Usher syndrome type 1B (USH1B) due to mutations in the large Myosin VIIA (MYO7A) gene is limited by the packaging capacity of adeno-associated viral (AAV) vectors. To overcome this, we have previously developed dual AAV8 vectors which encode human MYO7A (dual AAV8.MYO7A). Here we show that subretinal administration of 1.37E+9 to 1.37E+10 genome copies of a good-manufacturing-practice-like lot of dual AAV8.MYO7A improves the retinal defects of a mouse model of USH1B. The same lot was used in non-human primates at doses 1.6× and 4.3× the highest dose proposed for the clinical trial which was based on mouse efficacy data. Long-lasting alterations in retinal function and morphology were observed following subretinal administration of dual AAV8.MYO7A at the high dose. These findings were modest and improved over time in the low-dose group, as also observed in other studies involving the use of AAV8 in non-human primates and humans. Biodistribution and shedding studies confirmed the presence of vector DNA mainly in the visual pathway. Accordingly, we detected human MYO7A mRNA expression predominantly in the retina. Overall, these studies pave the way for the clinical translation of subretinal administration of dual AAV vectors in USH1B subjects.

5.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698501

RESUMO

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Adenoviridae , Idoso , Animais , Vacinas contra COVID-19 , Gorilla gorilla , Humanos , SARS-CoV-2
6.
Sci Transl Med ; 12(548)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554708

RESUMO

Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II-associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.


Assuntos
Vacinas Virais , Antígenos de Diferenciação de Linfócitos B/genética , Linfócitos T CD8-Positivos , Hepacivirus/genética , Antígenos de Histocompatibilidade Classe II , Humanos
7.
Mol Ther Methods Clin Dev ; 2: 15018, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26015988

RESUMO

Respiratory Syncytial Virus (RSV) is a leading cause of severe respiratory disease in infants and the elderly. No vaccine is presently available to address this major unmet medical need. We generated a new genetic vaccine based on chimpanzee Adenovirus (PanAd3-RSV) and Modified Vaccinia Ankara RSV (MVA-RSV) encoding the F, N, and M2-1 proteins of RSV, for the induction of neutralizing antibodies and broad cellular immunity. Because RSV infection is restricted to the respiratory tract, we compared intranasal (IN) and intramuscular (M) administration for safety, immunogenicity, and efficacy in different species. A single IN or IM vaccination completely protected BALB/c mice and cotton rats against RSV replication in the lungs. However, only IN administration could prevent infection in the upper respiratory tract. IM vaccination with MVA-RSV also protected cotton rats from lower respiratory tract infection in the absence of detectable neutralizing antibodies. Heterologous prime boost with PanAd3-RSV and MVA-RSV elicited high neutralizing antibody titers and broad T-cell responses in nonhuman primates. In addition, animals primed in the nose developed mucosal IgA against the F protein. In conclusion, we have shown that our vectored RSV vaccine induces potent cellular and humoral responses in a primate model, providing strong support for clinical testing.

8.
Sci Transl Med ; 6(261): 261ra153, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378645

RESUMO

A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Memória Imunológica , Vacinação/métodos , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas Virais/administração & dosagem , Adenoviridae/genética , Animais , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Inglaterra , ELISPOT , Voluntários Saudáveis , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/diagnóstico , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/sangue , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Testes de Liberação de Interferon-gama , Ativação Linfocitária , Pan troglodytes , Fatores de Tempo , Resultado do Tratamento , Vacinas de DNA , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
9.
Nat Med ; 20(10): 1126-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194571

RESUMO

Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinas contra Adenovirus/administração & dosagem , Vacinas contra Adenovirus/genética , Vacinas contra Adenovirus/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Adenovirus dos Símios/genética , Adenovirus dos Símios/imunologia , Animais , Vírus Defeituosos/genética , Vírus Defeituosos/imunologia , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Ebolavirus/genética , Feminino , Vetores Genéticos , Doença pelo Vírus Ebola/virologia , Humanos , Imunização Secundária , Macaca fascicularis , Pan troglodytes , RNA Viral/sangue , RNA Viral/genética , Fatores de Tempo , Vaccinia virus/genética , Vaccinia virus/imunologia
10.
Sci Transl Med ; 4(115): 115ra2, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22218691

RESUMO

Replication-defective adenovirus vectors based on human serotype 5 (Ad5) induce protective immune responses against diverse pathogens and cancer in animal models, as well as elicit robust and sustained cellular immunity in humans. However, most humans have neutralizing antibodies to Ad5, which can impair the immunological potency of such vaccines. Here, we show that rare serotypes of human adenoviruses, which should not be neutralized in most humans, are far less potent as vaccine vectors than Ad5 in mice and nonhuman primates, casting doubt on their potential efficacy in humans. To identify novel vaccine carriers suitable for vaccine delivery in humans, we isolated and sequenced more than 1000 adenovirus strains from chimpanzees (ChAd). Replication-defective vectors were generated from a subset of these ChAd serotypes and screened to determine whether they were neutralized by human sera and able to grow in human cell lines. We then ranked these ChAd vectors by immunological potency and found up to a thousandfold variation in potency for CD8+ T cell induction in mice. These ChAd vectors were safe and immunologically potent in phase 1 clinical trials, thereby validating our screening approach. These data suggest that the ChAd vectors developed here represent a large collection of non-cross-reactive, potent vectors that may be exploited for the development of new vaccines.


Assuntos
Adenovirus dos Símios/genética , Imunidade Celular/imunologia , Adenoviridae , Animais , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Vetores Genéticos , Humanos , Sistema Imunitário , Imunidade Celular/genética , Interferon gama/metabolismo , Camundongos , Pan troglodytes , Filogenia , Especificidade da Espécie
11.
Sci Transl Med ; 4(115): 115ra1, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22218690

RESUMO

Currently, no vaccine exists for hepatitis C virus (HCV), a major pathogen thought to infect 170 million people globally. Many studies suggest that host T cell responses are critical for spontaneous resolution of disease, and preclinical studies have indicated a requirement for T cells in protection against challenge. We aimed to elicit HCV-specific T cells with the potential for protection using a recombinant adenoviral vector strategy in a phase 1 study of healthy human volunteers. Two adenoviral vectors expressing NS proteins from HCV genotype 1B were constructed based on rare serotypes [human adenovirus 6 (Ad6) and chimpanzee adenovirus 3 (ChAd3)]. Both vectors primed T cell responses against HCV proteins; these T cell responses targeted multiple proteins and were capable of recognizing heterologous strains (genotypes 1A and 3A). HCV-specific T cells consisted of both CD4+ and CD8+ T cell subsets; secreted interleukin-2, interferon-γ, and tumor necrosis factor-α; and could be sustained for at least a year after boosting with the heterologous adenoviral vector. Studies using major histocompatibility complex peptide tetramers revealed long-lived central and effector memory pools that retained polyfunctionality and proliferative capacity. These data indicate that an adenoviral vector strategy can induce sustained T cell responses of a magnitude and quality associated with protective immunity and open the way for studies of prophylactic and therapeutic vaccines for HCV.


Assuntos
Adenoviridae/metabolismo , Hepacivirus/genética , Hepatite C/prevenção & controle , Linfócitos T/virologia , Vacinas contra Hepatite Viral/uso terapêutico , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Genótipo , Células HEK293 , Hepatite C/virologia , Humanos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Leucócitos Mononucleares/citologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA