Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792575

RESUMO

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Animais , Plasmodium falciparum , Epitopos , Proteínas de Protozoários , Antígenos de Protozoários , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Malária Falciparum/prevenção & controle
2.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792574

RESUMO

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Assuntos
Culicidae , Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Culicidae/metabolismo , Proteínas de Protozoários , Anticorpos Monoclonais , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários
3.
PLoS Pathog ; 20(10): e1012661, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466842

RESUMO

Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in ten Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.

4.
PLoS Pathog ; 20(9): e1012194, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39312594

RESUMO

While there has been significant progress in controlling falciparum malaria in the Lao People's Democratic Republic (PDR), sporadic cases persist in southern provinces where the extent and patterns of transmission remain largely unknown. To assess parasite transmission in this area, 53 Plasmodium falciparum (Pf) positive cases detected through active test and treat campaigns from December 2017 to November 2018 were sequenced, targeting 204 highly polymorphic amplicons. Two R packages, MOIRE and Dcifer, were applied to assess the multiplicity of infections (MOI), effective MOI (eMOI), within-host parasite relatedness, and between-host parasite relatedness ([Formula: see text]). Genomic data were integrated with survey data to characterize the temporal and spatial structures of identified clusters. The positive cases were mainly captured during the focal test and treat campaign conducted in 2018, and in the Pathoomphone area, which had the highest test positivity and forest activity. About 30% of the cases were polyclonal infections, with over half of theses (63%) showing within-host relatedness greater than 0.6, suggesting that cotransmission rather than superinfection was primarily responsible for maintaining polyclonality. A large majority of cases (81%) were infected by parasites genetically linked to one or more other cases. We identified five genetically distinct clusters in forest fringe villages within the Pathoomphone district, characterized by a high degree of genetic relatedness between parasites (mean [Formula: see text] = 0.8). Four smaller clusters of 2-3 cases linked Moonlapamok and Pathoomphone districts, with an average [Formula: see text] of 0.6, suggesting cross-district transmission. Most of the clustered cases occurred within 20 km and 2 months of each other, consistent with focal transmission. Transmission clusters identified in this study confirm the role of ongoing focal parasite transmission occurring within the forest or forest-fringe in the highly mobile population.


Assuntos
Florestas , Malária Falciparum , Plasmodium falciparum , Laos/epidemiologia , Plasmodium falciparum/genética , Humanos , Malária Falciparum/transmissão , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Feminino , Adulto , Adolescente , Criança , Pessoa de Meia-Idade , Adulto Jovem , Genômica/métodos , Pré-Escolar
5.
Bioinformatics ; 40(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39423091

RESUMO

MOTIVATION: Malaria parasite genetic data can provide insight into parasite phenotypes, evolution, and transmission. However, estimating key parameters such as allele frequencies, multiplicity of infection (MOI), and within-host relatedness from genetic data is challenging, particularly in the presence of multiple related coinfecting strains. Existing methods often rely on single nucleotide polymorphism (SNP) data and do not account for within-host relatedness. RESULTS: We present Multiplicity Of Infection and allele frequency REcovery (MOIRE), a Bayesian approach to estimate allele frequencies, MOI, and within-host relatedness from genetic data subject to experimental error. MOIRE accommodates both polyallelic and SNP data, making it applicable to diverse genotyping panels. We also introduce a novel metric, the effective MOI (eMOI), which integrates MOI and within-host relatedness, providing a robust and interpretable measure of genetic diversity. Extensive simulations and real-world data from a malaria study in Namibia demonstrate the superior performance of MOIRE over naive estimation methods, accurately estimating MOI up to seven with moderate-sized panels of diverse loci (e.g. microhaplotypes). MOIRE also revealed substantial heterogeneity in population mean MOI and mean relatedness across health districts in Namibia, suggesting detectable differences in transmission dynamics. Notably, eMOI emerges as a portable metric of within-host diversity, facilitating meaningful comparisons across settings when allele frequencies or genotyping panels differ. Compared to existing software, MOIRE enables more comprehensive insights into within-host diversity and population structure. AVAILABILITY AND IMPLEMENTATION: MOIRE is available as an R package at https://eppicenter.github.io/moire/.


Assuntos
Teorema de Bayes , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Software , Humanos , Malária , Alelos , Plasmodium falciparum/genética , Genótipo
6.
J Infect Dis ; 230(2): 497-504, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38874098

RESUMO

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Coinfection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G, K540E, and A581G) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in 2 previously little-studied countries.


Assuntos
Antimaláricos , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Refugiados , Humanos , Uganda/epidemiologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Prevalência , Pré-Escolar , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Feminino , Masculino , Criança , Proteínas de Protozoários/genética , Lactente , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Sudão/epidemiologia , Biomarcadores/sangue , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Parasitemia/epidemiologia , Parasitemia/tratamento farmacológico , Plasmodium malariae/genética , Plasmodium malariae/efeitos dos fármacos
7.
Antimicrob Agents Chemother ; 68(3): e0129123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259087

RESUMO

Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Plasmodium falciparum/genética , Malária Falciparum/parasitologia
8.
Malar J ; 23(1): 308, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407242

RESUMO

Malaria parasites are haploid within humans, but infections often contain genetically distinct groups of clonal parasites. When the per-infection number of genetically distinct clones (i.e., the multiplicity of infection, MOI) exceeds one, and per-infection genetic data are generated in bulk, important information are obfuscated. For example, the MOI, the phases of the haploid genotypes of genetically distinct clones (i.e., how the alleles concatenate into sequences), and their frequencies. This complicates many downstream analyses, including relatedness estimation. MOIs, parasite sequences, their frequencies, and degrees of relatedness are used ubiquitously in malaria studies: for example, to monitor anti-malarial drug resistance and to track changes in transmission. In this article, MrsFreqPhase methods designed to estimate statistically malaria parasite MOI, relatedness, frequency and phase are reviewed. An overview, a historical account of the literature, and a statistical description of contemporary software is provided for each method class. The article ends with a look towards future method development, needed to make best use of new data types generated by cutting-edge malaria studies reliant on MrsFreqPhase methods.


Assuntos
Malária , Malária/parasitologia , Humanos , Plasmodium/genética , Plasmodium/classificação
9.
J Infect Dis ; 227(2): 246-250, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089700

RESUMO

Interferon (IFN)-specific autoantibodies have been implicated in severe coronavirus disease 2019 (COVID-19) and have been proposed as a potential driver of the persistent symptoms characterizing "long COVID," a type of postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We report that only 2 of 215 participants with convalescent SARS-CoV-2 infection tested over 394 time points, including 121 people experiencing long COVID symptoms, had detectable IFN-α2 antibodies. Both had been hospitalized during the acute phase of the infection. These data suggest that persistent anti-IFN antibodies, although a potential driver of severe COVID-19, are unlikely to contribute to long COVID symptoms in the postacute phase of the infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Interferon-alfa , Síndrome de COVID-19 Pós-Aguda , Autoanticorpos , Prevalência
10.
Am J Epidemiol ; 192(9): 1562-1575, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119030

RESUMO

Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Incidência , Cinética , Estudos Soroepidemiológicos , COVID-19/epidemiologia , Anticorpos Antivirais
11.
J Med Virol ; 95(11): e29216, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988251

RESUMO

The associations between longitudinal dynamics and the breadth of SARS-CoV-2 neutralizing antibody (nAb) response with various Long COVID phenotypes before vaccination are not known. The capacity of antibodies to cross-neutralize a variety of viral variants may be associated with ongoing pathology and persistent symptoms. We measured longitudinal neutralizing and cross-neutralizing antibody responses to pre- and post-SARS-CoV-2 Omicron variants in participants infected early in the COVID-19 pandemic, before widespread rollout of SARS-CoV-2 vaccines. Cross-sectional regression models adjusted for clinical covariates and longitudinal mixed-effects models were used to determine the impact of the breadth and rate of decay of neutralizing responses on the development of Long COVID symptoms, as well as Long COVID phenotypes. We identified several novel relationships between SARS-CoV-2 antibody neutralization and the presence of Long COVID symptoms. Specifically, we show that, although nAb responses to the original, infecting strain of SARS-CoV-2 were not associated with Long COVID in cross-sectional analyses, cross-neutralization ID50 levels to the Omicron BA.5 variant approximately 4 months following acute infection was independently and significantly associated with greater odds of Long COVID and with persistent gastrointestinal and neurological symptoms. Longitudinal modeling demonstrated significant associations in the overall levels and rates of decay of neutralization capacity with Long COVID phenotypes. A higher proportion of participants had antibodies capable of neutralizing Omicron BA.5 compared with BA.1 or XBB.1.5 variants. Our findings suggest that relationships between various immune responses and Long COVID are likely complex but may involve the breadth of antibody neutralization responses.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Estudos Transversais , Pandemias , SARS-CoV-2 , Anticorpos Antivirais
12.
Malar J ; 22(1): 207, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420214

RESUMO

BACKGROUND: Accurate variant calls from whole genome sequencing (WGS) of Plasmodium falciparum infections are crucial in malaria population genomics. Here a falciparum variant calling pipeline based on GATK version 4 (GATK4) was optimized and applied to 6626 public Illumina WGS samples. METHODS: Control WGS and accurate PacBio assemblies of 10 laboratory strains were leveraged to optimize parameters that control the heterozygosity, local assembly region size, ploidy, mapping and base quality in both GATK HaplotypeCaller and GenotypeGVCFs. From these controls, a high-quality training dataset was generated to recalibrate the raw variant data. RESULTS: On current high-quality samples (read length = 250 bp, insert size = 405-524 bp), the optimized pipeline shows improved sensitivity (86.6 ± 1.7% for SNPs and 82.2 ± 5.9% for indels) compared to the default GATK4 pipeline (77.7 ± 1.3% for SNPs; and 73.1 ± 5.1% for indels, adjusted P < 0.001) and previous variant calling with GATK version 3 (GATK3, 70.3 ± 3.0% for SNPs and 59.7 ± 5.8% for indels, adjusted P < 0.001). Its sensitivity on simulated mixed infection samples (80.8 ± 6.1% for SNPs and 78.3 ± 5.1% for indels) was again improved relative to default GATK4 (68.8 ± 6.0% for SNPs and 38.9 ± 0.7% for indels, adjusted, adjusted P < 0.001). Precision was high and comparable across all pipelines on each type of data tested. The resulting combination of high-quality SNPs and indels increases the resolution of local population population structure detection in sub-Saharan Africa. Finally, increasing ploidy improves the detection of drug resistance mutations and estimation of complexity of infection. CONCLUSIONS: Overall, this study provides an optimized falciparum GATK4 pipeline resource for variant calling which should help improve genomic studies of malaria.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Plasmodium falciparum , Plasmodium falciparum/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , Genômica/métodos , Genoma , Polimorfismo de Nucleotídeo Único
13.
J Infect Dis ; 225(7): 1227-1237, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840625

RESUMO

BACKGROUND: Targeted next-generation sequencing offers the potential for consistent, deep coverage of information-rich genomic regions to characterize polyclonal Plasmodium falciparum infections. However, methods to identify and sequence these genomic regions are currently limited. METHODS: A bioinformatic pipeline and multiplex methods were developed to identify and simultaneously sequence 100 targets and applied to dried blood spot (DBS) controls and field isolates from Mozambique. For comparison, whole-genome sequencing data were generated for the same controls. RESULTS: Using publicly available genomes, 4465 high-diversity genomic regions suited for targeted sequencing were identified, representing the P. falciparum heterozygome. For this study, 93 microhaplotypes with high diversity (median expected heterozygosity = 0.7) were selected along with 7 drug resistance loci. The sequencing method achieved very high coverage (median 99%), specificity (99.8%), and sensitivity (90% for haplotypes with 5% within sample frequency in dried blood spots with 100 parasites/µL). In silico analyses revealed that microhaplotypes provided much higher resolution to discriminate related from unrelated polyclonal infections than biallelic single-nucleotide polymorphism barcodes. CONCLUSIONS: The bioinformatic and laboratory methods outlined here provide a flexible tool for efficient, low-cost, high-throughput interrogation of the P. falciparum genome, and can be tailored to simultaneously address multiple questions of interest in various epidemiological settings.


Assuntos
Malária Falciparum , Plasmodium falciparum , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Sequenciamento Completo do Genoma/métodos
14.
Mol Biol Evol ; 38(1): 274-289, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32898225

RESUMO

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relationships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.


Assuntos
Malária/transmissão , Modelos Estatísticos , Plasmodium/genética , Adolescente , Criança , Pré-Escolar , Variação Genética , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Prevalência , Superinfecção , Uganda/epidemiologia
15.
Malar J ; 21(1): 58, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189905

RESUMO

BACKGROUND: Inference of person-to-person transmission networks using surveillance data is increasingly used to estimate spatiotemporal patterns of pathogen transmission. Several data types can be used to inform transmission network inferences, yet the sensitivity of those inferences to different data types is not routinely evaluated. METHODS: The influence of different combinations of spatial, temporal, and travel-history data on transmission network inferences for Plasmodium falciparum malaria were evaluated. RESULTS: The information content of these data types may be limited for inferring person-to-person transmission networks and may lead to an overestimate of transmission. Only when outbreaks were temporally focal or travel histories were accurate was the algorithm able to accurately estimate the reproduction number under control, Rc. Applying this approach to data from Eswatini indicated that inferences of Rc and spatiotemporal patterns therein depend upon the choice of data types and assumptions about travel-history data. CONCLUSIONS: These results suggest that transmission network inferences made with routine malaria surveillance data should be interpreted with caution.


Assuntos
Malária Falciparum , Malária , Surtos de Doenças , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Reprodução
16.
J Infect Dis ; 224(11): 1839-1848, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677601

RESUMO

BACKGROUND: The biological processes associated with postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) are unknown. METHODS: We measured soluble markers of inflammation in a SARS-CoV-2 recovery cohort at early (<90 days) and late (>90 days) timepoints. We defined PASC as the presence of 1 or more coronavirus disease 2019 (COVID-19)-attributed symptoms beyond 90 days. We compared fold-changes in marker values between those with and without PASC using mixed-effects models with terms for PASC and early and late recovery time periods. RESULTS: During early recovery, those who went on to develop PASC generally had higher levels of cytokine biomarkers including tumor necrosis factor-α (1.14-fold higher mean ratio [95% confidence interval {CI}, 1.01-1.28]; P = .028) and interferon-γ-induced protein 10 (1.28-fold higher mean ratio [95% CI, 1.01-1.62]; P = .038). Among those with PASC, there was a trend toward higher interleukin 6 levels during early recovery (1.29-fold higher mean ratio [95% CI, .98-1.70]; P = .07), which became more pronounced in late recovery (1.44-fold higher mean ratio [95% CI, 1.11-1.86]; P < .001). These differences were more pronounced among those with a greater number of PASC symptoms. CONCLUSIONS: Persistent immune activation may be associated with ongoing symptoms following COVID-19. Further characterization of these processes might identify therapeutic targets for those experiencing PASC.


Assuntos
COVID-19 , Inflamação , Biomarcadores/sangue , COVID-19/complicações , COVID-19/imunologia , Citocinas/sangue , Progressão da Doença , Humanos , Inflamação/sangue , Inflamação/virologia , Síndrome de COVID-19 Pós-Aguda
17.
Clin Infect Dis ; 73(Suppl 2): S127-S135, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32821935

RESUMO

BACKGROUND: There is an urgent need to understand the dynamics and risk factors driving ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission during shelter-in-place mandates. METHODS: We offered SARS-CoV-2 reverse-transcription polymerase chain reaction (PCR) and antibody (Abbott ARCHITECT IgG) testing, regardless of symptoms, to all residents (aged ≥4 years) and workers in a San Francisco census tract (population: 5174) at outdoor, community-mobilized events over 4 days. We estimated SARS-CoV-2 point prevalence (PCR positive) and cumulative incidence (antibody or PCR positive) in the census tract and evaluated risk factors for recent (PCR positive/antibody negative) vs prior infection (antibody positive/PCR negative). SARS-CoV-2 genome recovery and phylogenetics were used to measure viral strain diversity, establish viral lineages present, and estimate number of introductions. RESULTS: We tested 3953 persons (40% Latinx; 41% White; 9% Asian/Pacific Islander; and 2% Black). Overall, 2.1% (83/3871) tested PCR positive: 95% were Latinx and 52% were asymptomatic when tested; 1.7% of census tract residents and 6.0% of workers (non-census tract residents) were PCR positive. Among 2598 tract residents, estimated point prevalence of PCR positives was 2.3% (95% confidence interval [CI], 1.2%-3.8%): 3.9% (95% CI, 2.0%-6.4%) among Latinx persons vs 0.2% (95% CI, .0-.4%) among non-Latinx persons. Estimated cumulative incidence among residents was 6.1% (95% CI, 4.0%-8.6%). Prior infections were 67% Latinx, 16% White, and 17% other ethnicities. Among recent infections, 96% were Latinx. Risk factors for recent infection were Latinx ethnicity, inability to shelter in place and maintain income, frontline service work, unemployment, and household income <$50 000/year. Five SARS-CoV-2 phylogenetic lineages were detected. CONCLUSIONS: SARS-CoV-2 infections from diverse lineages continued circulating among low-income, Latinx persons unable to work from home and maintain income during San Francisco's shelter-in-place ordinance.


Assuntos
COVID-19 , SARS-CoV-2 , Abrigo de Emergência , Humanos , Filogenia , São Francisco/epidemiologia
18.
Lancet ; 395(10233): 1361-1373, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334702

RESUMO

BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/prevenção & controle , Administração Massiva de Medicamentos/métodos , Controle de Mosquitos , Antimaláricos/administração & dosagem , Combinação Arteméter e Lumefantrina/administração & dosagem , Análise por Conglomerados , Humanos , Malária Falciparum/epidemiologia , Controle de Mosquitos/métodos , Namíbia/epidemiologia , Plasmodium falciparum , Estudos Soroepidemiológicos
19.
BMC Med ; 19(1): 116, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962621

RESUMO

BACKGROUND: COVID-19 outbreaks have occurred in homeless shelters across the US, highlighting an urgent need to identify the most effective infection control strategy to prevent future outbreaks. METHODS: We developed a microsimulation model of SARS-CoV-2 transmission in a homeless shelter and calibrated it to data from cross-sectional polymerase chain reaction (PCR) surveys conducted during COVID-19 outbreaks in five homeless shelters in three US cities from March 28 to April 10, 2020. We estimated the probability of averting a COVID-19 outbreak when an exposed individual is introduced into a representative homeless shelter of 250 residents and 50 staff over 30 days under different infection control strategies, including daily symptom-based screening, twice-weekly PCR testing, and universal mask wearing. RESULTS: The proportion of PCR-positive residents and staff at the shelters with observed outbreaks ranged from 2.6 to 51.6%, which translated to the basic reproduction number (R0) estimates of 2.9-6.2. With moderate community incidence (~ 30 confirmed cases/1,000,000 people/day), the estimated probabilities of averting an outbreak in a low-risk (R0 = 1.5), moderate-risk (R0 = 2.9), and high-risk (R0 = 6.2) shelter were respectively 0.35, 0.13, and 0.04 for daily symptom-based screening; 0.53, 0.20, and 0.09 for twice-weekly PCR testing; 0.62, 0.27, and 0.08 for universal masking; and 0.74, 0.42, and 0.19 for these strategies in combination. The probability of averting an outbreak diminished with higher transmissibility (R0) within the simulated shelter and increasing incidence in the local community. CONCLUSIONS: In high-risk homeless shelter environments and locations with high community incidence of COVID-19, even intensive infection control strategies (incorporating daily symptom screening, frequent PCR testing, and universal mask wearing) are unlikely to prevent outbreaks, suggesting a need for non-congregate housing arrangements for people experiencing homelessness. In lower-risk environments, combined interventions should be employed to reduce outbreak risk.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/prevenção & controle , Simulação por Computador , Surtos de Doenças/prevenção & controle , Pessoas Mal Alojadas , Controle de Infecções/métodos , COVID-19/epidemiologia , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Cidades/epidemiologia , Cidades/estatística & dados numéricos , Simulação por Computador/estatística & dados numéricos , Estudos Transversais , Surtos de Doenças/estatística & dados numéricos , Pessoas Mal Alojadas/estatística & dados numéricos , Habitação/estatística & dados numéricos , Humanos , Controle de Infecções/estatística & dados numéricos , Programas de Rastreamento/métodos , Programas de Rastreamento/estatística & dados numéricos , Estados Unidos/epidemiologia
20.
J Neurovirol ; 27(1): 191-195, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528824

RESUMO

As cases of coronavirus disease 2019 (COVID-19) mount worldwide, attention is needed on potential long-term neurologic impacts for the majority of patients who experience mild to moderate illness managed as outpatients. To date, there has not been discussion of persistent neurocognitive deficits in patients with milder COVID-19. We present two cases of non-hospitalized patients recovering from COVID-19 with persistent neurocognitive symptoms. Commonly used cognitive screens were normal, while more detailed testing revealed working memory and executive functioning deficits. An observational cohort study of individuals recovering from COVID-19 (14 or more days following symptom onset) identified that among the first 100 individuals enrolled, 14 were non-hospitalized patients reporting persistent cognitive issues. These 14 participants had a median age of 39 years (interquartile range: 35-56), and cognitive symptoms were present for at least a median of 98 days (interquartile range: 71-120 following acute COVID-19 symptoms); no participants with follow-up evaluation reported symptom resolution. We discuss potential mechanisms to be explored in future studies, including direct viral effects, indirect consequences of immune activation, and immune dysregulation causing auto-antibody production.


Assuntos
COVID-19/fisiopatologia , Disfunção Cognitiva/fisiopatologia , SARS-CoV-2/patogenicidade , Adulto , COVID-19/complicações , COVID-19/imunologia , COVID-19/virologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/virologia , Função Executiva/fisiologia , Feminino , Humanos , Memória de Curto Prazo/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Pacientes Ambulatoriais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA