Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.084
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(6): 1545-1559.e18, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32846159

RESUMO

In many eukaryotes, Argonaute proteins, guided by short RNA sequences, defend cells against transposons and viruses. In the eubacterium Thermus thermophilus, the DNA-guided Argonaute TtAgo defends against transformation by DNA plasmids. Here, we report that TtAgo also participates in DNA replication. In vivo, TtAgo binds 15- to 18-nt DNA guides derived from the chromosomal region where replication terminates and associates with proteins known to act in DNA replication. When gyrase, the sole T. thermophilus type II topoisomerase, is inhibited, TtAgo allows the bacterium to finish replicating its circular genome. In contrast, loss of gyrase and TtAgo activity slows growth and produces long sausage-like filaments in which the individual bacteria are linked by DNA. Finally, wild-type T. thermophilus outcompetes an otherwise isogenic strain lacking TtAgo. We propose that the primary role of TtAgo is to help T. thermophilus disentangle the catenated circular chromosomes generated by DNA replication.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromossomos/metabolismo , Ciprofloxacina/farmacologia , DNA/genética , Replicação do DNA/efeitos dos fármacos , Endonucleases/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas Recombinantes , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Imagem Individual de Molécula , Espectrometria de Massas em Tandem , Thermus thermophilus/genética , Thermus thermophilus/crescimento & desenvolvimento , Thermus thermophilus/ultraestrutura , Inibidores da Topoisomerase II/farmacologia
2.
Cell ; 177(1): 45-57, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901547

RESUMO

In the wake of the Human Genome Project (HGP), strong expectations were set for the timeline and impact of genomics on medicine-an anticipated transformation in the diagnosis, treatment, and prevention of disease. In this Perspective, we take stock of the nascent field of genomic medicine. In what areas, if any, is genomics delivering on this promise, or is the path to success clear? Where are we falling short, and why? What have been the unanticipated developments? Overall, we argue that the optimism surrounding the transformational potential of genomics on medicine remains justified, albeit with a considerably different form and timescale than originally projected. We also argue that the field needs to pivot back to basics, as understanding the entirety of the genotype-to-phenotype equation is a likely prerequisite for delivering on the full potential of the human genome to advance the human condition.


Assuntos
Genoma Humano/genética , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Testes Genéticos , Genômica/métodos , Genômica/tendências , Projeto Genoma Humano , Humanos
3.
Annu Rev Immunol ; 29: 185-214, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21219183

RESUMO

Receptors of the innate immune system recognize conserved microbial features and provide key signals that initiate immune responses. Multiple transmembrane and cytosolic receptors have evolved to recognize RNA and DNA, including members of the Toll-like receptor and RIG-I-like receptor families and several DNA sensors. This strategy enables recognition of a broad range of pathogens; however, in some cases, this benefit is weighed against the cost of potential self recognition. Recognition of self nucleic acids by the innate immune system contributes to the pathology associated with several autoimmune or autoinflammatory diseases. In this review, we highlight our current understanding of nucleic acid sensing by innate immune receptors and discuss the regulatory mechanisms that normally prevent inappropriate responses to self.


Assuntos
DNA/química , Infecções/imunologia , RNA/química , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Animais , Citosol/química , Retículo Endoplasmático/metabolismo , Humanos , Imunidade Inata , Lisossomos/metabolismo , Receptores Toll-Like/imunologia
4.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599163

RESUMO

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Assuntos
Células Dendríticas , Imunidade Inata , Imunidade Adaptativa , Receptores de Reconhecimento de Padrão/metabolismo , Ativação Linfocitária
5.
Immunity ; 56(10): 2373-2387.e8, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714151

RESUMO

Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.


Assuntos
Linfócitos B , Nódulos Linfáticos Agregados , Camundongos , Humanos , Animais , Antígenos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Imunoglobulina A , Mucosa Intestinal
6.
Cell ; 169(1): 6-12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340351

RESUMO

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos Animais
7.
Cell ; 165(4): 827-41, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153495

RESUMO

To maintain a symbiotic relationship between the host and its resident intestinal microbiota, appropriate mucosal T cell responses to commensal antigens must be established. Mice acquire both IgG and IgA maternally; the former has primarily been implicated in passive immunity to pathogens while the latter mediates host-commensal mutualism. Here, we report the surprising observation that mice generate T cell-independent and largely Toll-like receptor (TLR)-dependent IgG2b and IgG3 antibody responses against their gut microbiota. We demonstrate that maternal acquisition of these antibodies dampens mucosal T follicular helper responses and subsequent germinal center B cell responses following birth. This work reveals a feedback loop whereby T cell-independent, TLR-dependent antibodies limit mucosal adaptive immune responses to newly acquired commensal antigens and uncovers a broader function for maternal IgG.


Assuntos
Animais Recém-Nascidos/imunologia , Microbioma Gastrointestinal , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Leite Humano/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Animais Recém-Nascidos/microbiologia , Linfócitos B/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Receptores Toll-Like/imunologia
8.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839864

RESUMO

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Assuntos
Núcleo Celular/metabolismo , Adesões Focais , Neoplasias Pulmonares/secundário , Melanoma/patologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Matriz Extracelular/metabolismo , Feminino , Forminas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
9.
Cell ; 162(4): 849-59, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26234155

RESUMO

Microtubule (MT) dynamic instability is driven by GTP hydrolysis and regulated by microtubule-associated proteins, including the plus-end tracking end-binding protein (EB) family. We report six cryo-electron microscopy (cryo-EM) structures of MTs, at 3.5 Å or better resolution, bound to GMPCPP, GTPγS, or GDP, either decorated with kinesin motor domain after polymerization or copolymerized with EB3. Subtle changes around the E-site nucleotide during hydrolysis trigger conformational changes in α-tubulin around an "anchor point," leading to global lattice rearrangements and strain generation. Unlike the extended lattice of the GMPCPP-MT, the EB3-bound GTPγS-MT has a compacted lattice that differs in lattice twist from that of the also compacted GDP-MT. These results and the observation that EB3 promotes rapid hydrolysis of GMPCPP suggest that EB proteins modulate structural transitions at growing MT ends by recognizing and promoting an intermediate state generated during GTP hydrolysis. Our findings explain both EBs end-tracking behavior and their effect on microtubule dynamics.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Sus scrofa/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
10.
Nature ; 634(8035): 868-874, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39415003

RESUMO

Islands are renowned as evolutionary laboratories and support many species that are not found elsewhere1,2. Islands are also of great conservation concern, with many of their endemic species currently threatened or extinct3. Here we present a standardized checklist of all known vascular plants that occur on islands and document their geographical and phylogenetic distribution and conservation risk. Our analyses of 304,103 plant species reveal that 94,052 species (31%) are native to islands, which constitute 5.3% of the global landmass4. Of these, 63,280 are island endemic species, which represent 21% of global plant diversity. Three-quarters of these are restricted to large or isolated islands. Compared with the world flora, island endemics are non-randomly distributed within the tree of life, with a total of 1,005 billion years of unique phylogenetic history with 17 families and 1,702 genera being entirely endemic to islands. Of all vascular plants assigned International Union for Conservation of Nature conservation categories5, 22% are island endemics. Among these endemic species, 51% are threatened, and 55% of all documented global extinctions have occurred on islands. We find that of all single-island endemic species, only 6% occur on islands meeting the United Nations 30×30 conservation target. Urgent measures including habitat restoration, invasive species removal and ex situ programmes are needed to protect the world's island flora. Our checklist quantifies the uniqueness of island life, provides a basis for future studies of island floras, and highlights the urgent need to take actions for conserving them.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Ilhas , Filogenia , Plantas , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Espécies em Perigo de Extinção/estatística & dados numéricos , Espécies em Perigo de Extinção/tendências , Extinção Biológica , Mapeamento Geográfico , Plantas/classificação
11.
Nature ; 629(8010): 211-218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600391

RESUMO

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Assuntos
Proteína Forkhead Box O1 , Memória Imunológica , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Proteína Forkhead Box O1/metabolismo , Edição de Genes , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia
12.
Nat Immunol ; 18(4): 456-463, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192417

RESUMO

Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Patrimônio Genético , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Interações Hospedeiro-Patógeno/genética , Imunização , Epitopos Imunodominantes/química , Memória Imunológica , Vírus da Influenza A/imunologia , Linfonodos/imunologia , Camundongos , Modelos Moleculares , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Conformação Proteica , Viroses/genética , Viroses/virologia
13.
Cell ; 157(5): 1117-29, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855948

RESUMO

Dynamic instability, the stochastic switching between growth and shrinkage, is essential for microtubule function. This behavior is driven by GTP hydrolysis in the microtubule lattice and is inhibited by anticancer agents like Taxol. We provide insight into the mechanism of dynamic instability, based on high-resolution cryo-EM structures (4.7-5.6 Å) of dynamic microtubules and microtubules stabilized by GMPCPP or Taxol. We infer that hydrolysis leads to a compaction around the E-site nucleotide at longitudinal interfaces, as well as movement of the α-tubulin intermediate domain and H7 helix. Displacement of the C-terminal helices in both α- and ß-tubulin subunits suggests an effect on interactions with binding partners that contact this region. Taxol inhibits most of these conformational changes, allosterically inducing a GMPCPP-like state. Lateral interactions are similar in all conditions we examined, suggesting that microtubule lattice stability is primarily modulated at longitudinal interfaces.


Assuntos
Guanosina Trifosfato/metabolismo , Microtúbulos/química , Tubulina (Proteína)/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Trifosfato/análogos & derivados , Humanos , Hidrólise , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Paclitaxel/metabolismo , Conformação Proteica , Tubulina (Proteína)/metabolismo
14.
Nature ; 615(7952): 541-547, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890228

RESUMO

Diverse aerobic bacteria use atmospheric H2 as an energy source for growth and survival1. This globally significant process regulates the composition of the atmosphere, enhances soil biodiversity and drives primary production in extreme environments2,3. Atmospheric H2 oxidation is attributed to uncharacterized members of the [NiFe] hydrogenase superfamily4,5. However, it remains unresolved how these enzymes overcome the extraordinary catalytic challenge of oxidizing picomolar levels of H2 amid ambient levels of the catalytic poison O2 and how the derived electrons are transferred to the respiratory chain1. Here we determined the cryo-electron microscopy structure of the Mycobacterium smegmatis hydrogenase Huc and investigated its mechanism. Huc is a highly efficient oxygen-insensitive enzyme that couples oxidation of atmospheric H2 to the hydrogenation of the respiratory electron carrier menaquinone. Huc uses narrow hydrophobic gas channels to selectively bind atmospheric H2 at the expense of O2, and 3 [3Fe-4S] clusters modulate the properties of the enzyme so that atmospheric H2 oxidation is energetically feasible. The Huc catalytic subunits form an octameric 833 kDa complex around a membrane-associated stalk, which transports and reduces menaquinone 94 Å from the membrane. These findings provide a mechanistic basis for the biogeochemically and ecologically important process of atmospheric H2 oxidation, uncover a mode of energy coupling dependent on long-range quinone transport, and pave the way for the development of catalysts that oxidize H2 in ambient air.


Assuntos
Atmosfera , Hidrogênio , Hidrogenase , Mycobacterium smegmatis , Microscopia Crioeletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Hidrogenase/ultraestrutura , Oxirredução , Oxigênio , Vitamina K 2/metabolismo , Atmosfera/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Hidrogenação
15.
Nature ; 620(7972): 128-136, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468623

RESUMO

Studies have demonstrated that at least 20% of individuals infected with SARS-CoV-2 remain asymptomatic1-4. Although most global efforts have focused on severe illness in COVID-19, examining asymptomatic infection provides a unique opportunity to consider early immunological features that promote rapid viral clearance. Here, postulating that variation in the human leukocyte antigen (HLA) loci may underly processes mediating asymptomatic infection, we enrolled 29,947 individuals, for whom high-resolution HLA genotyping data were available, in a smartphone-based study designed to track COVID-19 symptoms and outcomes. Our discovery cohort (n = 1,428) comprised unvaccinated individuals who reported a positive test result for SARS-CoV-2. We tested for association of five HLA loci with disease course and identified a strong association between HLA-B*15:01 and asymptomatic infection, observed in two independent cohorts. Suggesting that this genetic association is due to pre-existing T cell immunity, we show that T cells from pre-pandemic samples from individuals carrying HLA-B*15:01 were reactive to the immunodominant SARS-CoV-2 S-derived peptide NQKLIANQF. The majority of the reactive T cells displayed a memory phenotype, were highly polyfunctional and were cross-reactive to a peptide derived from seasonal coronaviruses. The crystal structure of HLA-B*15:01-peptide complexes demonstrates that the peptides NQKLIANQF and NQKLIANAF (from OC43-CoV and HKU1-CoV) share a similar ability to be stabilized and presented by HLA-B*15:01. Finally, we show that the structural similarity of the peptides underpins T cell cross-reactivity of high-affinity public T cell receptors, providing the molecular basis for HLA-B*15:01-mediated pre-existing immunity.


Assuntos
Alelos , Infecções Assintomáticas , COVID-19 , Antígenos HLA-B , Humanos , COVID-19/genética , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Antígenos HLA-B/imunologia , Estudos de Coortes , Linfócitos T/imunologia , Epitopos Imunodominantes/imunologia , Reações Cruzadas/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
17.
Nature ; 611(7935): 380-386, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289330

RESUMO

ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation1-3. In turn, force4,5 and actin filament (F-actin) nucleotide state6 regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-Pi-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-Pi-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.


Assuntos
Citoesqueleto de Actina , Actinas , Difosfato de Adenosina , Microscopia Crioeletrônica , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Solventes , Aprendizado de Máquina , Conformação Proteica
18.
Nature ; 603(7903): 852-857, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322229

RESUMO

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3-11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14-16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17.


Assuntos
Dinossauros , Adaptação Fisiológica , Animais , Evolução Biológica , Carnivoridade , Dinossauros/anatomia & histologia , Fósseis , Mamíferos , Filogenia
19.
Nature ; 602(7897): 503-509, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110735

RESUMO

The adoptive transfer of T lymphocytes reprogrammed to target tumour cells has demonstrated potential for treatment of various cancers1-7. However, little is known about the long-term potential and clonal stability of the infused cells. Here we studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia1-4 who achieved a complete remission in 2010. CAR T cells remained detectable more than ten years after infusion, with sustained remission in both patients. Notably, a highly activated CD4+ population emerged in both patients, dominating the CAR T cell population at the later time points. This transition was reflected in the stabilization of the clonal make-up of CAR T cells with a repertoire dominated by a small number of clones. Single-cell profiling demonstrated that these long-persisting CD4+ CAR T cells exhibited cytotoxic characteristics along with ongoing functional activation and proliferation. In addition, longitudinal profiling revealed a population of gamma delta CAR T cells that prominently expanded in one patient concomitant with CD8+ CAR T cells during the initial response phase. Our identification and characterization of these unexpected CAR T cell populations provide novel insight into the CAR T cell characteristics associated with anti-cancer response and long-term remission in leukaemia.


Assuntos
Linfócitos T CD4-Positivos , Imunoterapia Adotiva , Leucemia , Receptores de Antígenos Quiméricos , Antígenos CD19/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Humanos , Leucemia/imunologia , Leucemia/terapia , Receptores de Antígenos Quiméricos/imunologia , Fatores de Tempo
20.
Nature ; 608(7923): 609-617, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948633

RESUMO

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA