Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Chem Phys ; 158(4): 044302, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725522

RESUMO

Two-dimensional infrared (2D IR) spectroscopy, infrared pump-infrared probe spectroscopy, and density functional theory calculations were used to study vibrational relaxation by ring and carbonyl stretching modes in a series of methylated xanthine derivatives in acetonitrile and deuterium oxide (heavy water). Isotropic signals from the excited symmetric and asymmetric carbonyl stretch modes decay biexponentially in both solvents. Coherent energy transfer between the symmetric and asymmetric carbonyl stretching modes gives rise to a quantum beat in the time-dependent anisotropy signals. The damping time of the coherent oscillation agrees with the fast decay component of the carbonyl bleach recovery signals, indicating that this time constant reflects intramolecular vibrational redistribution (IVR) to other solute modes. Despite their similar frequencies, the excited ring modes decay monoexponentially with a time constant that matches the slow decay component of the carbonyl modes. The slow decay times, which are faster in heavy water than in acetonitrile, approximately match the ones observed in previous UV pump-IR probe measurements on the same compounds. The slow component is assigned to intermolecular energy transfer to solvent bath modes from low-frequency solute modes, which are populated by IVR and are anharmonically coupled to the carbonyl and ring stretch modes. 2D IR measurements indicate that the carbonyl stretching modes are weakly coupled to the delocalized ring modes, resulting in slow exchange that cannot explain the common solvent-dependence. IVR is suggested to occur at different rates for the carbonyl vs ring modes due to differences in mode-specific couplings and not to differences in the density of accessible states.

2.
J Am Chem Soc ; 143(34): 13824-13834, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34420309

RESUMO

The ligand-nanocrystal boundaries of colloidal quantum dots (QDs) mediate the primary energy and electron transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We use mid-infrared transient absorption spectroscopy to reveal the influence that ligand structure and bonding to nanocrystal surfaces have on the changes of the excited state surface chemistry of this boundary in PbS QDs and the corresponding impact on charge transfer processes between nanocrystals. We demonstrate that oleate ligands undergo marked changes in their bonding to surfaces in the excitonic excited states of the nanocrystals, indicating that oleate passivated PbS surfaces undergo significant structural changes following photoexcitation. These changes can impact the surface mobility of the ligands and the ability of redox shuttles to approach the nanocrystal surfaces to undergo charge transfer in photocatalytic reactions. In contrast, markedly different transient vibrational features are observed in iodide/mercaptoproprionic acid passivated PbS QD films that result from charge transfer between neighboring nanocrystals and localization of holes at the nanocrystal surfaces near MPA ligands. This ability to distinguish the influence that excitonic excited states vs charge transfer processes have on the surface chemistry of the ligand-nanocrystal boundary lays the groundwork for exploration of how this boundary can be understood and controlled for the design of nanocrystalline materials tailored for specific applications in solar energy harvesting and photocatalytic reactions.

3.
Faraday Discuss ; 216(0): 520-537, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012874

RESUMO

Eumelanin is a natural pigment with photoprotective and radical scavenging characteristics, which are vital for a multitude of living organisms. However, the molecular mechanisms behind these functions remain obscure, in part because eumelanin is a heterogeneous polymer composed of a complex assortment of structural and chemical domains. Despite uncertainty about its precise structure, the functional units of eumelanin are thought to include quinones in various oxidation states. Here, we investigate the photochemistry of a catechol : o-quinone heterodimer as a model system for uncovering the photoprotective roots of eumelanin. Ultrafast transient absorption measurements in the UV to near-IR spectral regions are used to identify the photochemical processes that follow selective excitation of the o-quinone in the heterodimer using 395 nm light. We find that both singlet and triplet o-quinone excited states induce hydrogen atom transfer from the catechol, forming semiquinone radical pairs that persist beyond 2.5 ns, which is the upper time limit accessible by our instrument. Furthermore, the hydrogen atom transfer reaction was found to occur 1000 times faster via the singlet channel. Excited state pathways such as these may be important in eumelanin, where similar hydrogen-bonded interfaces are believed to exist between catechol and o-quinone functional groups.


Assuntos
Benzoquinonas/química , Catecóis/química , Melaninas/química , Modelos Químicos , Cicloexanos/química , Dimerização , Estrutura Molecular , Processos Fotoquímicos
4.
J Phys Chem A ; 123(25): 5356-5366, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31242734

RESUMO

The catechol functional motif is thought to play both a structural and photochemical role in the ubiquitous natural pigment, eumelanin. Intramolecular and intermolecular hydrogen bonding interactions lead to a variety of geometries involving the two O-H groups in catechol, but its photophysical behavior in these situations has not been comprehensively characterized. Toward this end, we monitor the UV-induced O-H bond photodissociation reaction in an exemplar catechol derivative, 4- tert-butylcatechol, possessing different intramolecular and intermolecular hydrogen bonding geometries using femtosecond transient absorption spectroscopy measurements in the UV-visible and mid-infrared regions following 265 nm photoexcitation. Three different hydrogen bonding arrangements are obtained by tuning solution complexation equilibria of the catechol with the hydrogen bond acceptor, diethyl ether (Et2O), and are verified computationally. We find that intermolecular hydrogen bonding to the free O-H group in catechol increases its first excited singlet state (S1) lifetime by 2 orders of magnitude (i.e., ∼ 16 to 1410 ps), and that O-H bond dissociation is prevented because Et2O is a poor hydrogen atom acceptor. Complexation of both O-H groups with multiple Et2O molecules further elongates the S1 lifetime to 1670 ps due to shifting of the solution equilibria that describe complex formation. Weakening of the characteristic, intramolecular hydrogen bond of the catechol derivative by intermolecular hydrogen bonding to one or more Et2O molecules does not enhance the rate of O-H bond dissociation.

5.
J Chem Phys ; 151(15): 154701, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640354

RESUMO

We use native vibrational modes of the model singlet fission chromophore 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) to examine the origins of singlet fission in solution between molecules that are not tethered by a covalent linkage. We use the C-H stretch modes of TIPS side groups of TIPS-Pn to demonstrate that singlet fission does not occur by diffusive encounter of independent molecules in solution. Instead, TIPS-Pn molecules aggregate in solution through their TIPS side groups. This aggregation breaks the symmetry of the TIPS-Pn molecules and enables the formation of triplets to be probed through the formally symmetry forbidden symmetric alkyne stretch mode of the TIPS side groups. The alkyne stretch modes of TIPS-Pn are sensitive to the electronic excited states present during the singlet fission reaction and provide unique signatures of the formation of triplets following the initial separation of triplet pair intermediates. These findings highlight the opportunity to leverage structural information from vibrational modes to better understand intermolecular interactions that lead to singlet fission.

6.
Phys Chem Chem Phys ; 19(36): 24829-24839, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28868536

RESUMO

Ultrafast vibrational spectroscopy in the mid-infrared was used to directly probe the delocalization of excitons in two different perylenediimide (PDI) derivatives that are predicted to preclude the formation of excimers, which can act as trap sites for excited state energy in organic semiconductors. We identified vibrational modes within the conjugated C-C stretch modes of PDI molecules whose frequencies reported the interactions of molecules within delocalized excitonic states. The vibrational linewidths of these modes, which we call intermolecular coordinate coupled (ICC) modes, provided a direct probe of the extent of exciton delocalization among the PDI molecules, which was confirmed using X-ray diffraction and electro-absorption spectroscopy. We show that a slip-stacked geometry among the PDI molecules in their crystals promotes delocalized charge-transfer (CT) excitons, while localized Frenkel excitons tend to form in crystals with helical, columnar stacking geometries. Because all molecules possess vibrational modes, the use of ultrafast mid-infrared spectroscopy to measure ICC vibrational modes offers a new approach to examine exciton delocalization in a variety of small molecule electron acceptors for optoelectronic and organic photovoltaic applications.

7.
J Am Chem Soc ; 138(49): 16069-16080, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960344

RESUMO

The multiplication of excitons in organic semiconductors via singlet fission offers the potential for photovoltaic cells that exceed the Shockley-Quiesser limit for single-junction devices. To fully utilize the potential of singlet fission sensitizers in devices, it is necessary to understand and control the diffusion of the resultant triplet excitons. In this work, a new processing method is reported to systematically tune the intermolecular order and crystalline structure in films of a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn), without the need for chemical modifications. A combination of transient absorption spectroscopy and quantitative materials characterization enabled a detailed examination of the distance- and time-dependence of triplet exciton diffusion following singlet fission in these nanocrystalline TIPS-Pn films. Triplet-triplet annihilation rate constants were found to be representative of the weighted average of crystalline and amorphous phases in TIPS-Pn films comprising a mixture of phases. Adopting a diffusion model used to describe triplet-triplet annihilation, the triplet diffusion lengths for nanocrystalline and amorphous films of TIPS-Pn were estimated to be ∼75 and ∼14 nm, respectively. Importantly, the presence of even a small fraction (<10%) of the amorphous phase in the TIPS-Pn films greatly decreased the ultimate triplet diffusion length, suggesting that pure crystalline materials may be essential to efficiently harvest multiplied triplets even when singlet fission occurs on ultrafast time scales.

11.
Appl Spectrosc ; : 37028241247072, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629126

RESUMO

In this work, we detail an ultrafast pump-probe transient absorption (TA) spectrometer capable of probing the near-infrared (NIR) spectral region from 900 to 2350 nm simultaneously. Two key advances were required to overcome previous spectral window limitations, which typically result from constrained supercontinuum ranges (e.g., 1700 nm) and/or InGaAs detector line rates, especially those with >1700 nm range. First, we generated a broadband NIR supercontinuum using the 1980 nm idler beam of an optical parametric amplifier and implement a unique spectral filtering scheme to balance the detected spectrum. Second, we used a prism-based spectrometer system equipped with high speed InGaAs cameras having ∼2500 nm sensitivity cutoffs. To the best knowledge of the authors, such an extended probe range was previously inaccessible because the combination of two optical geometries either using different supercontinuum crystal materials for generating the NIR and shortwave infrared (SWIR) regions, or using differing pump wavelengths, were required. Finally, we demonstrate the performance and capabilities of the ultrabroadband TA spectroscopy system by presenting data showing ultrafast charge photogeneration in a polymer : fullerene blend thin-film and comparing the results to the literature with a complete agreement.

12.
Photochem Photobiol ; 99(2): 680-692, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36178073

RESUMO

Eumelanin is a ubiquitous biological pigment that rapidly and efficiently deactivates excited states created by UV or visible radiation. Paradoxically, photoirradiation of eumelanin also generates radicals and harmful reactive oxygen species, but the relationship between these pathways and excited-state deactivation is uncertain. Here, greatly expanding the excitation tuning range (225-620 nm) and probing window (400-1500 nm) in femtosecond transient absorption spectroscopy of the synthetic eumelanin, DOPA melanin, enables the detection of photogenerated radials with ultrafast time resolution for the first time. Despite its heterogeneous nature, the transient absorption signals can be modeled by two spectral components assigned to solvated electrons and photogenerated radicals. Radical absorbance measured several nanoseconds after excitation increases exponentially with increasing photon energy, matching the trend in radical yields measured in electron paramagnetic resonance spectroscopy experiments. Spectral modeling of the transient signals reveals two radical generation mechanisms: (1) photoionization by UV light; and (2) photoinduced charge transfer among eumelanin chromophores by UVA and visible wavelengths capable of reaching the pigment in skin. Concurrent ultrafast relaxation and radical generation underlie the ability of eumelanin to be both photoprotective and photodamaging, and the branching between these pathways likely depends on the wavelength of the absorbed light.


Assuntos
Luz , Melaninas , Melaninas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Raios Ultravioleta
13.
J Phys Chem C Nanomater Interfaces ; 126(23): 9784-9793, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35756579

RESUMO

Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission. In this work, we report a molecular packing arrangement in crystalline films of 5,14-bis(triisopropylsilylethynyl)-substituted pentacene, specifically a local (pairwise) packing arrangement, responsible for complete quenching of triplet pairs generated via singlet fission. We first demonstrate that the energetic condition necessary for singlet fission is satisfied in amorphous films of the 5,14-substituted pentacene derivative. However, while triplet pairs form highly efficiently in the amorphous films, only a modest yield of independent triplets is observed. In crystalline films, triplet pairs also form highly efficiently, although independent triplets are not observed because triplet pairs decay rapidly and are quenched completely. We assign the quenching to a rapid nonadiabatic transition directly to the ground state. Detrimental quenching is observed in crystalline films of two additional 5,14-bis(trialkylsilylethynyl)-substituted pentacenes with either ethyl or isobutyl substituents. Developing a better understanding of the losses identified in this work, and associated molecular packing, may benefit overcoming losses in solids of other singlet fission materials.

14.
Nat Commun ; 11(1): 4569, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917892

RESUMO

Eumelanin is a brown-black biological pigment with sunscreen and radical scavenging functions important to numerous organisms. Eumelanin is also a promising redox-active material for energy conversion and storage, but the chemical structures present in this heterogeneous pigment remain unknown, limiting understanding of the properties of its light-responsive subunits. Here, we introduce an ultrafast vibrational fingerprinting approach for probing the structure and interactions of chromophores in heterogeneous materials like eumelanin. Specifically, transient vibrational spectra in the double-bond stretching region are recorded for subsets of electronic chromophores photoselected by an ultrafast excitation pulse tuned through the UV-visible spectrum. All subsets show a common vibrational fingerprint, indicating that the diverse electronic absorbers in eumelanin, regardless of transition energy, contain the same distribution of IR-active functional groups. Aggregation of chromophores diverse in oxidation state is the key structural property underlying the universal, ultrafast deactivation behavior of eumelanin in response to photoexcitation with any wavelength.


Assuntos
Melaninas/química , Vibração , Oxirredução , Espectrofotometria Infravermelho/métodos , Protetores Solares
15.
Chem Sci ; 11(5): 1248-1259, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34123249

RESUMO

Eumelanin, the brown-black pigment found in organisms from bacteria to humans, dissipates solar energy and prevents photochemical damage. While the structure of eumelanin is unclear, it is thought to consist of an extremely heterogeneous collection of chromophores that absorb from the UV to the infrared, additively producing its remarkably broad absorption spectrum. However, the chromophores responsible for absorption by eumelanin and their excited state decay pathways remain highly uncertain. Using femtosecond broadband transient absorption spectroscopy, we address the excited state behavior of chromophore subsets that make up a synthetic eumelanin, DOPA melanin, and probe the heterogeneity of its chromophores. Tuning the excitation light over more than an octave from the UV to the visible and probing with the broadest spectral window used to study any form of melanin to date enable the detection of spectral holes with a linewidth of 0.6 eV that track the excitation wavelength. Transient spectral hole burning is a manifestation of extreme chemical heterogeneity, yet exciting these diverse chromophores unexpectedly produces a common photoinduced absorption spectrum and similar kinetics. This common photoresponse is assigned to the ultrafast formation of immobile charge transfer excitons that decay locally and that are formed among graphene-like chromophores in less than 200 fs. Raman spectroscopy reveals that chromophore heterogeneity in DOPA melanin arises from different sized domains of sp2-hybridized carbon and nitrogen atoms. Furthermore, we identify for the first time striking parallels between the excited state dynamics of eumelanin and disordered carbon nanomaterials, suggesting that they share common structural attributes.

16.
Photochem Photobiol ; 95(1): 163-175, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30317633

RESUMO

The catechol functional group plays a major role in the chemistry of a wide variety of molecules important in biology and technology. In eumelanin, intermolecular hydrogen bonding between these functional groups is thought to contribute to UV photoprotective and radical buffering properties, but the mechanisms are poorly understood. Here, aggregates of 4-t-butylcatechol are used as model systems to study how intermolecular hydrogen bonding influences photochemical pathways that may occur in eumelanin. Ultrafast UV-visible and mid-IR transient absorption measurements are used to identify the photochemical processes of 4-t-butylcatechol monomers and their hydrogen-bonded aggregates in cyclohexane solution. Monomer photoexcitation results in hydrogen atom ejection to the solvent via homolytic O-H bond dissociation with a time constant of 12 ps, producing a neutral semiquinone radical with a lifetime greater than 1 ns. In contrast, intermolecular hydrogen bonding interactions within aggregates retard O-H bond photodissociation by over an order of magnitude in time. Excited state structural relaxation is proposed to slow O-H dissociation, allowing internal conversion to the ground state to occur in hundreds of picoseconds in competition with this channel. The semiquinone radicals formed in the aggregates exhibit spectral broadening of both their electronic and vibrational transitions.

17.
ACS Appl Mater Interfaces ; 10(46): 39933-39941, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30360072

RESUMO

Despite significant recent progress, much about the mechanism for charge photogeneration in organic photovoltaics remains unknown. Here, we use conjugated block copolymers as model systems to examine the effects of energetic and entropic driving forces in organic donor-acceptor materials. The block copolymers are designed such that an electron donor block and an electron acceptor block are covalently linked, embedding a donor-acceptor interface within the molecular structure. This enables model studies in solution where processes occurring between one donor and one acceptor are examined. First, energy levels and dielectric constants that govern the driving force for charge transfer are systematically tuned and charge transfer within individual block copolymer chains is quantified. Results indicate that in isolated chains, a significant driving force of ∼0.3 eV is necessary to facilitate significant exciton dissociation to charge-transfer states. Next, block copolymers are cast into films, allowing for intermolecular interactions and charge delocalization over multiple chains. In the solid state, charge transfer is significantly enhanced relative to isolated block copolymer chains. Using Marcus Theory, we conclude that changes in the energetic driving force alone cannot explain the increased efficiency of exciton dissociation to charge-transfer states in the solid state. This implies that increasing the number of accessible states for charge transfer introduces an entropic driving force that can play an important role in the charge-generation mechanism of organic materials, particularly in systems where the excited state energy level is close to that of the charge-transfer state.

18.
ACS Nano ; 12(6): 6263-6272, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29792675

RESUMO

Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

19.
Chem Sci ; 9(29): 6240-6259, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30090312

RESUMO

Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet-triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields.

20.
J Phys Chem Lett ; 8(23): 5700-5706, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112418

RESUMO

Ultrafast vibrational spectroscopy in the mid-infrared spectral range provides the opportunity to probe the dynamics of electronic states involved in all stages of the singlet fission reaction through their unique vibrational frequencies. This capability is demonstrated using a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). The alkyne groups of the TIPS side chains are coupled to the conjugated framework of the pentacene cores, enabling direct examination of the dynamics of triplet excitons that have successfully separated from correlated triplet pair states in crystalline films of TIPS-Pn. Relaxation processes during the separation of triplet excitons and triplet-triplet annihilation after their separation result in the formation of hot ground state molecules that also exhibit unique vibrational frequencies. Because all organic molecules possess native vibrational modes, ultrafast vibrational spectroscopy offers a new approach to examine the dynamics of electronic intermediates that may inform ongoing efforts to utilize singlet fission to overcome thermalization losses in photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA