Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 195(7): 3011-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283479

RESUMO

NOD-scid.Il2rg(null) (NSG) mice are currently being used as recipients to screen for pathogenic autoreactive T cells in type 1 diabetes (T1D) patients. We questioned whether the restriction of IL-2R γ-chain (Il-2rγ)-dependent cytokine signaling only to donor cells in NSG recipients differently influenced the activities of transferred diabetogenic T cells when they were introduced as a monoclonal/oligoclonal population versus being part of a polyclonal repertoire. Unexpectedly, a significantly decreased T1D transfer by splenocytes from prediabetic NOD donors was observed in Il-2rγ(null)-NSG versus Il-2rγ-intact standard NOD-scid recipients. In contrast, NOD-derived monoclonal/oligoclonal TCR transgenic ß cell-autoreactive T cells in either the CD8 (AI4, NY8.3) or CD4 (BDC2.5) compartments transferred disease significantly more rapidly to NSG than to NOD-scid recipients. The reduced diabetes transfer efficiency by polyclonal T cells in NSG recipients was associated with enhanced activation of regulatory T cells (Tregs) mediated by NSG myeloid APC. This enhanced suppressor activity was associated with higher levels of Treg GITR expression in the presence of NSG than NOD-scid APC. These collective results indicate NSG recipients might be efficiently employed to test the activity of T1D patient-derived ß cell-autoreactive T cell clones and lines, but, when screening for pathogenic effectors within polyclonal populations, Tregs should be removed from the transfer inoculum to avoid false-negative results.


Assuntos
Transferência Adotiva , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Receptores de Interleucina-2/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide/biossíntese , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Interleucina-2/genética , Transdução de Sinais/imunologia , Baço/citologia , Baço/imunologia , Linfócitos T Reguladores/transplante
2.
Mol Ther ; 24(9): 1570-80, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27203437

RESUMO

Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteínas Mutantes , Linfócitos T/metabolismo , Proteínas Virais/metabolismo , Dependovirus/genética , Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Ordem dos Genes , Marcação de Genes , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Recombinação Homóloga , Humanos , RNA Guia de Cinetoplastídeos/genética , Transdução Genética , Proteínas Virais/genética
3.
AACE Clin Case Rep ; 9(4): 101-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520758

RESUMO

Background: Identifying cases of diabetes caused by single gene mutations between the more common type 1 diabetes (T1D) and type 2 diabetes (T2D) is a difficult but important task. We report the diagnosis of ATP-binding cassette transporter sub-family C member 8 (ABCC8)-related monogenic diabetes in a 35-year-old woman with a protective human leukocyte antigen (HLA) allele who was originally diagnosed with T1D at 18 years of age. Case Report: Patient A presented with polyuria, polydipsia, and hypertension at the age of 18 years and was found to have a blood glucose > 500 mg/dL (70-199 mg/dL) and an HbA1C (hemoglobin A1C) >14% (4%-5.6%). She had an unmeasurable C-peptide but no urine ketones. She was diagnosed with T1D and started on insulin therapy. Antibody testing was negative. She required low doses of insulin and later had persistence of low but detectable C-peptide. At the age of 35 years, she was found to have a protective HLA allele, and genetic testing revealed a pathogenic mutation in the ABCC8 gene. The patient was then successfully transitioned to sulfonylurea therapy. Discussion: Monogenic diabetes diagnosed in adolescence typically presents with mild to moderate hyperglycemia, positive family history and, in some cases, other organ findings or dysfunction. The patient in this report presented with very high blood glucose, prompting the diagnosis of T1D. When she was found to have a protective HLA allele, further investigation revealed the mutation in the sulfonylurea receptor gene, ABCC8. Conclusion: Patients suspected of having T1D but with atypical clinical characteristics such as negative autoantibodies, low insulin requirements, and persistence of C-peptide should undergo genetic testing for monogenic diabetes.

4.
Mol Ther Methods Clin Dev ; 4: 192-203, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345004

RESUMO

Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

5.
Mol Ther Nucleic Acids ; 5: e306, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27093168

RESUMO

Increasing demand for large-scale synthesis of in vitro transcribed (IVT) mRNA is being driven by the increasing use of mRNA for transient gene expression in cell engineering and therapeutic applications. An important determinant of IVT mRNA potency is the 3' polyadenosine (poly(A)) tail, the length of which correlates with translational efficiency. However, present methods for generation of IVT mRNA rely on templates derived from circular plasmids or PCR products, in which homopolymeric tracts are unstable, thus limiting encoded poly(A) tail lengths to ~120 base pairs (bp). Here, we have developed a novel method for generation of extended poly(A) tracts using a previously described linear plasmid system, pJazz. We find that linear plasmids can successfully propagate poly(A) tracts up to ~500 bp in length for IVT mRNA production. We then modified pJazz by removing extraneous restriction sites, adding a T7 promoter sequence upstream from an extended multiple cloning site, and adding a unique type-IIS restriction site downstream from the encoded poly(A) tract to facilitate generation of IVT mRNA with precisely defined encoded poly(A) tracts and 3' termini. The resulting plasmid, designated pEVL, can be used to generate IVT mRNA with consistent defined lengths and terminal residue(s).

6.
Diabetes ; 60(4): 1229-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21346176

RESUMO

OBJECTIVE: Type 1 diabetes can be inhibited in standard NOD mice by autoantigen-specific immunotherapy targeting pathogenic CD8+ T-cells. NOD.ß2m(null).HHD mice expressing human HLA-A2.1 but lacking murine major histocompatibility complex class I molecules develop diabetes characterized by CD8 T-cells recognizing certain autoantigenic peptides also targeted in human patients. These include peptides derived from the pancreatic ß-cell proteins insulin (INS1/2 A(2-10) and INS1 B(5-14)) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP(265-273) and IGRP(228-236)). Hence, NOD.ß2m(null).HHD mice represent a model system for developing potentially clinically translatable interventions for suppressing diabetogenic HLA-A2.1-restricted T-cell responses. RESEARCH DESIGN AND METHODS: Starting at 4-6 weeks of age, NOD.ß2m(null).HHD female mice were injected intravenously with syngeneic splenocytes to which various admixtures of the four above-mentioned peptides were bound by the cross-linking agent ethylene carbodiimide (ECDI). RESULTS: Treatment with such cells bearing the complete cocktail of INS and IGRP epitopes (designated INS/IGRP-SPs) significantly inhibited diabetes development in NOD.ß2m(null).HHD recipients compared with controls receiving splenocytes coupled with an irrelevant HLA-A2.1-restricted Flu16 peptide. Subsequent analyses found syngeneic splenocytes bearing the combination of the two ECDI-coupled IGRPs but not INS peptides (IGRP-SPs or INS-SPs) effectively inhibited diabetes development in NOD.ß2m(null).HHD mice. This result was supported by enzyme-linked immunospot (ELISPOT) analyses indicating combined INS/IGRP-SPs diminished HLA-A2.1-restricted IGRP but not INS autoreactive CD8+ T-cell responses in NOD.ß2m(null).HHD mice. CONCLUSIONS: These data support the potential of a cell therapy approach targeting HLA-A2.1-restricted IGRP autoreactive CD8 T-cells as a diabetes intervention approach in appropriate human patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Ensaio de Imunoadsorção Enzimática , Feminino , Glucose-6-Fosfatase/imunologia , Antígeno HLA-A2/genética , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteínas/imunologia , Baço/citologia
7.
Diabetes ; 59(2): 423-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19903740

RESUMO

OBJECTIVE: In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. RESEARCH DESIGN AND METHODS: We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. RESULTS: Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. CONCLUSIONS: This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Células Matadoras Naturais/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Animais , Autoanticorpos/sangue , Antígeno B7-1/imunologia , Ligante CD27/imunologia , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/prevenção & controle , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Organismos Livres de Patógenos Específicos
8.
J Immunol ; 180(5): 3250-9, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18292549

RESUMO

When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Deleção Clonal/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timo/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Mapeamento Cromossômico , Deleção Clonal/imunologia , Células Clonais , Diabetes Mellitus Tipo 1/metabolismo , Marcadores Genéticos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Locos de Características Quantitativas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/metabolismo , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA