Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(33): 16268-16273, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31363051

RESUMO

We study the connection between personal and professional behavior by introducing usage of a marital infidelity website as a measure of personal conduct. Police officers and financial advisors who use the infidelity website are significantly more likely to engage in professional misconduct. Results are similar for US Securities and Exchange Commission (SEC) defendants accused of white-collar crimes, and companies with chief executive officers (CEOs) or chief financial officers (CFOs) who use the website are more than twice as likely to engage in corporate misconduct. The relation is not explained by a wide range of regional, firm, executive, and cultural variables. These findings suggest that personal and workplace behavior are closely related.


Assuntos
Conta Bancária/ética , Crime/psicologia , Casamento/estatística & dados numéricos , Polícia/psicologia , Adulto , Crime/ética , Feminino , Humanos , Masculino , Casamento/psicologia , Pessoa de Meia-Idade , Polícia/ética
2.
Magn Reson Chem ; 60(5): 489-503, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35023583

RESUMO

Conjugated alkali metal dicarboxylates have recently received attention for applications as organic anode materials in lithium- and sodium-ion batteries. In order to understand and optimise these materials, it is important to be able to characterise both the long-range and local aspects of the crystal structure, which may change during battery cycling. Furthermore, some materials can display polymorphism or hydration behaviour. NMR crystallography, which combines long-range crystallographic information from diffraction with local information from solid-state NMR via interpretation aided by DFT calculations, is one such approach, but this has not yet been widely applied to conjugated dicarboxylates. In this work, we evaluate the application of NMR crystallography for a set of model lithium and sodium dicarboxylate salts. We investigate the effect of different DFT geometry optimisation strategies and find that the calculated NMR parameters are not systematically affected by the choice of optimisation method, although the inclusion of dispersion correction schemes is important to accurately reproduce the experimental unit cell parameters. We also observe hydration behaviour for two of the sodium salts and provide insight into the structure of an as-yet uncharacterised structure of sodium naphthalenedicarboxylate. This highlights the importance of sample preparation and characterisation for organic sodium-ion battery anode materials in particular.

3.
Chemistry ; 27(11): 3875-3886, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32852862

RESUMO

Na2 Ti3 O7 (NTO) is considered a promising anode material for Na-ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+ /Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na2 Ti6 O13 . The enhanced electrochemical performance agrees with the higher Na+ ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.

4.
Inorg Chem ; 60(17): 12950-12960, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34492769

RESUMO

A series of azobenzene-loaded metal-organic frameworks were synthesized with the general formula M2(BDC)2(DABCO)(AB)x (M = Zn, Co, Ni, and Cu; BDC = 1,4-benzenedicarboxylate; DABCO = 1,4-diazabicyclo[2.2.2]octane; and AB = azobenzene), herein named M-1⊃ABx. Upon occlusion of AB, each framework undergoes guest-induced breathing, whereby the pores contract around the AB molecules forming a narrow-pore (np) framework. The loading level of the framework is found to be very sensitive to the synthetic protocol and although the stable loading level is close to M-1⊃AB1.0, higher loading levels can be achieved for the Zn, Co, and Ni frameworks prior to vacuum treatment, with a maximum composition for the Zn framework of Zn-1⊃AB1.3. The degree of pore contraction upon loading is modulated by the inherent flexibility of the metal-carboxylate paddlewheel unit in the framework, with the Zn-1⊃AB1.0 showing the biggest contraction of 6.2% and the more rigid Cu-1⊃AB1.0 contracting by only 1.7%. Upon heating, each composite shows a temperature-induced phase transition to an open-pore (op) framework, and the enthalpy and onset temperatures of the phase transition are affected by the framework flexibility. For all composites, UV irradiation causes trans → cis isomerization of the occluded AB molecules. The population of cis-AB at the photostationary state and the thermal stability of the occluded cis-AB molecules are also found to correlate with the flexibility of the framework. Over a full heating-cooling cycle between 0 and 200 °C, the energy stored within the metastable cis-AB molecules is released as heat, with a maximum energy density of 28.9 J g-1 for Zn-1⊃AB1.0. These findings suggest that controlled confinement of photoswitches within flexible frameworks is a potential strategy for the development of solid-solid phase change materials for energy storage.

5.
Phys Chem Chem Phys ; 23(30): 15925-15934, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34286771

RESUMO

In situ NMR spectroscopy is a powerful technique to investigate charge storage mechanisms in carbon-based supercapacitors thanks to its ability to distinguish ionic and molecular species adsorbed in the porous electrodes from those in the bulk electrolyte. The NMR peak corresponding to the adsorbed species shows a clear change of chemical shift as the applied potential difference is varied. This variation in chemical shift is thought to originate from a combination of ion reorganisation in the pores and changes in ring current shifts due to the changes of electronic density in the carbon. While previous Density Functional Theory calculations suggested that the electronic density has a large effect, the relative contributions of these two effects is challenging to untangle. Here, we use mesoscopic simulations to simulate NMR spectra and investigate the relative importance of ion reorganisation and ring currents on the resulting chemical shift. The model is able to predict chemical shifts in good agreement with NMR experiments and indicates that the ring currents are the dominant contribution. A thorough analysis of a specific electrode/electrolyte combination for which detailed NMR experiments have been reported allows us to confirm that local ion reorganisation has a very limited effect but the relative quantities of ions in pores of different sizes, which can change upon charging/discharging, can lead to a significant effect. Our findings suggest that in situ NMR spectra of supercapacitors may provide insights into the electronic structure of carbon materials in the future.

6.
Magn Reson Chem ; 59(9-10): 1024-1037, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33729603

RESUMO

Tris(8-hydroxyquinolinate)aluminium (Alq3 ) is a metal-organic coordination complex, which is a widely used electroluminescent material in organic light-emitting diode technology. Crystalline Alq3 is known to occur in five polymorphic forms (denoted α, ß, γ, δ, and ε), although the structures of some of these polymorphs have been the subject of considerable debate. In particular, the structure of α-Alq3 , which is a model for the local structure in amorphous films used in devices, is highly complex and has never been conclusively solved. In this work, we use solid-state nuclear magnetic resonance (NMR) and density functional theory (DFT) calculations to investigate the local structure of four Alq3 samples. We find that the first structure proposed for α-Alq3 is inconsistent with all of the samples studied, and DFT calculations further suggest that this structure is energetically unfavourable. Instead, samples containing the meridional (mer) isomeric form are found to contain local structures consistent with ε-Alq3 , and a sample containing the facial (fac) isomeric form is consistent with a mixture of γ-Alq3 and δ-Alq3 . We also investigate the influence of different strategies for dispersion correction in DFT geometry optimisations. We find that a recently proposed modified semiempirical dispersion correction scheme gives good agreement with experiment. Furthermore, the DFT calculations also show that distinction between mer and fac isomers on the basis of ηQ that has been assumed in previous work is not always justified.

7.
J Am Chem Soc ; 141(7): 3024-3036, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30676032

RESUMO

The Earth's transition zone, at depths of 410-660 km, while being composed of nominally anhydrous magnesium silicate minerals, may be subject to significant hydration. Little is known about the mechanism of hydration, despite the vital role this plays in the physical and chemical properties of the mantle, leading to a need for improved structural characterization. Here we present an ab initio random structure searching (AIRSS) investigation of semihydrous (1.65 wt % H2O) and fully hydrous (3.3 wt % H2O) wadsleyite. Following the AIRSS process, k-means clustering was used to select sets of structures with duplicates removed, which were then subjected to further geometry optimization with tighter constraints prior to NMR calculations. Semihydrous models identify a ground-state structure (Mg3 vacancies, O1-H hydroxyls) that aligns with a number of previous experimental observations. However, predicted NMR parameters fail to reproduce low-intensity signals observed in solid-state NMR spectra. In contrast, the fully hydrous models produced by AIRSS, which enable both isolated and clustered defects, are able to explain observed NMR signals via just four low-enthalpy structures: (i) a ground state, with isolated Mg3 vacancies and O1-H hydroxyls; (ii/iii) edge-sharing Mg3 vacancies with O1-H and O3-H species; and (iv) edge-sharing Mg1 and Mg3 vacancies with O1-H, O3-H, and O4-H hydroxyls. Thus, the combination of advanced structure searching approaches and solid-state NMR spectroscopy is able to provide new and detailed insight into the structure of this important mantle mineral.

8.
Magn Reson Chem ; 57(5): 230-242, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30452093

RESUMO

A photochromic anil, N-(3,5-di-t-butylsalicylidene)-4-amino-pyridine, has been studied by single-crystal X-ray diffraction, multinuclear magic-angle spinning NMR, and first-principles density functional theory (DFT) calculations. Interpretation of the solid-state NMR data on the basis of calculated chemical shifts confirms the structure is primarily composed of molecules in the ground-state enol tautomer, whereas thermally activated cis-keto and photoisomerised trans-keto states exist as low-level defects with populations that are too low to detect experimentally. Variable temperature 13 C NMR data reveal evidence for solid-state dynamics, which is found to be associated with fast rotational motion of t-butyl groups and 180° flips of the pyridine ring, contrasting the time-averaged structure obtained by X-ray diffraction. Comparison of calculated chemical shifts for the full crystal structure and an isolated molecule also reveals evidence for an intermolecular hydrogen bond involving the pyridine ring and an adjacent imine carbon, which facilitates the flipping motion. The DFT calculations also reveal that the molecular conformation in the crystal structure is very close to the energetic minimum for an isolated molecule, indicating that the ring dynamics arise as a result of considerable steric freedom of the pyridine ring and which also allows the molecule to adopt a favourable conformation for photochromism.

9.
Chemphyschem ; 19(14): 1722-1732, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29667743

RESUMO

Multinuclear (1 H, 13 C, 25 Mg) solid-state NMR data is reported for a series of magnesium acetate phases Mg(CH3 COO)2 ⋅ nH2 O (n=0 (two polymorphs), 1, 4). The central focus here is 25 Mg as this set of compounds provides an expanded range of local magnesium coordinations compared to what has previously been reported in the literature using NMR. These four compounds provide 10 distinct magnesium sites with varying NMR interaction parameters. One of the anhydrous crystal structures (α) has an MgO7 site which is reported, to the best of our knowledge, for the first time. For those phases with a single crystal structure, a combination of magic angle spinning (MAS) NMR at high magnetic field (20 T) and first principles density functional theory (DFT) calculations demonstrates the value of including 25 Mg in NMR crystallography approaches. For the second anhydrate phase (ß), where no single crystal structure exists, the multinuclear NMR data clearly show the multiplicity of sites for the different elements, with 25 Mg satellite transition (ST) MAS NMR revealing four inequivalent magnesium environments, which is new information constraining future refinement of the structure. This study highlights the sensitivity of 25 Mg NMR to the local environment, an observation important for several sub-disciplines of chemistry where the structural chemistry of magnesium is likely to be crucial.

10.
Phys Chem Chem Phys ; 20(27): 18207-18215, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29915824

RESUMO

Fluorine is often incorporated into the aromatic moieties of synthetic bioactive molecules such as pharmaceuticals and disease diagnostics in order to alter their physicochemical properties. Fluorine substitution may increase a molecule's lipophilicity, thereby enabling its diffusion across cell membranes to enhance bioavailability or to exert a direct physiological effect from within the lipid bilayer. Understanding the structure, dynamics and orientation of fluoroaromatic molecules in lipid bilayers can provide useful insight into the effect of fluorine on their mode of action, and their interactions with membrane-embedded targets or efflux proteins. Here we demonstrate that NMR measurements of 19F chemical shift anisotropy combined with 1H-19F dipolar coupling measurements together report on the average orientation of a lipophilic fluoroaromatic molecule, 4-(6-fluorobenzo[d]thiazol-2-yl)aniline (FBTA), rapidly rotating within a lipid bilayer. The 19F chemical shift tensor orientation in the molecular frame was calculated by density functional theory and corroborated by 1H-19F PISEMA NMR. It was then possible to analyse the line shapes of proton-coupled and proton-decoupled 19F spectra of FBTA in chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) bilayers to restrict the average axis of molecular reorientation of FBTA in the bilayer to a limited range orientations. This approach, which exploits the high sensitivity and gyromagnetic ratios of 19F and 1H, will be useful for comparing the membrane properties of related bioactive fluoroaromatic compounds.


Assuntos
Compostos de Anilina/química , Bicamadas Lipídicas/química , Compostos Orgânicos/química , Tiazóis/química , Anisotropia , Difusão , Dimiristoilfosfatidilcolina/química , Flúor , Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
11.
Solid State Nucl Magn Reson ; 89: 45-49, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157868

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13C nuclei in porous carbons to nearby nuclei in the cations (1H) or anions (19F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp2-hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited.

12.
J Am Chem Soc ; 138(28): 8888-99, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27264849

RESUMO

Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nanoprocessing is required for many materials, we show here that both the capacity and rate performance of low-temperature bronze-phase TT- and T-polymorphs of Nb2O5 are inherent properties of the bulk crystal structure. Their unique "room-and-pillar" NbO6/NbO7 framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60C (12.1 A·g(-1)), while the higher temperature (Wadsley-Roth, crystallographic shear structure) H-phase shows high intercalation capacity (>200 mA·h·g(-1)) but only at moderate rates. High-resolution (6/7)Li solid-state nuclear magnetic resonance (NMR) spectroscopy of T-Nb2O5 revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable-temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2)-98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb2O5 synthesized in a single step at relatively low temperatures suggest that this material not only is structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realization of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs.

13.
J Am Chem Soc ; 138(18): 5731-44, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27031622

RESUMO

Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance. Increased understanding and control of charging mechanisms should lead to new strategies for developing next-generation supercapacitors with improved performances.

14.
J Am Chem Soc ; 138(7): 2352-65, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26824406

RESUMO

Operando pair distribution function (PDF) analysis and ex situ (23)Na magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy are used to gain insight into the alloying mechanism of high-capacity antimony anodes for sodium-ion batteries. Subtraction of the PDF of crystalline NaxSb phases from the total PDF, an approach constrained by chemical phase information gained from (23)Na ssNMR in reference to relevant model compounds, identifies two previously uncharacterized intermediate species formed electrochemically; a-Na(3-x)Sb (x ≈ 0.4-0.5), a structure locally similar to crystalline Na3Sb (c-Na3Sb) but with significant numbers of sodium vacancies and a limited correlation length, and a-Na(1.7)Sb, a highly amorphous structure featuring some Sb-Sb bonding. The first sodiation breaks down the crystalline antimony to form first a-Na(3-x)Sb and, finally, crystalline Na3Sb. Desodiation results in the formation of an electrode formed of a composite of crystalline and amorphous antimony networks. We link the different reactivity of these networks to a series of sequential sodiation reactions manifesting as a cascade of processes observed in the electrochemical profile of subsequent cycles. The amorphous network reacts at higher voltages reforming a-Na(1.7)Sb, then a-Na(3-x)Sb, whereas lower potentials are required for the sodiation of crystalline antimony, which reacts to form a-Na(3-x)Sb without the formation of a-Na(1.7)Sb. a-Na(3-x)Sb is converted to crystalline Na3Sb at the end of the second discharge. We find no evidence of formation of NaSb. Variable temperature (23)Na NMR experiments reveal significant sodium mobility within c-Na3Sb; this is a possible contributing factor to the excellent rate performance of Sb anodes.

15.
Nat Mater ; 14(8): 812-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26099110

RESUMO

Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

16.
Phys Chem Chem Phys ; 18(15): 10173-81, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27020937

RESUMO

The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (ß-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg(2+) and randomly placing two H(+) in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1-H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4-H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies.

17.
Solid State Nucl Magn Reson ; 74-75: 16-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974032

RESUMO

Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered.

18.
J Am Chem Soc ; 137(11): 3867-76, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25732257

RESUMO

(17)O NMR spectroscopy combined with first-principles calculations was employed to understand the local structure and dynamics of the phosphate ions and protons in the paraelectric phase of the proton conductor CsH2PO4. For the room-temperature structure, the results confirm that one proton (H1) is localized in an asymmetric H-bond (between O1 donor and O2 acceptor oxygen atoms), whereas the H2 proton undergoes rapid exchange between two sites in a hydrogen bond with a symmetric double potential well at a rate ≥10(7) Hz. Variable-temperature (17)O NMR spectra recorded from 22 to 214 °C were interpreted by considering different models for the rotation of the phosphate anions. At least two distinct rate constants for rotations about four pseudo C3 axes of the phosphate ion were required in order to achieve good agreement with the experimental data. An activation energy of 0.21 ± 0.06 eV was observed for rotation about the P-O1 axis, with a higher activation energy of 0.50 ± 0.07 eV being obtained for rotation about the P-O2, P-O3(d), and P-O3(a) axes, with the superscripts denoting, respectively, dynamic donor and acceptor oxygen atoms of the H-bond. The higher activation energy of the second process is most likely associated with the cost of breaking an O1-H1 bond. The activation energy of this process is slightly lower than that obtained from the (1)H exchange process (0.70 ± 0.07 eV) (Kim, G.; Blanc, F.; Hu, Y.-Y.; Grey, C. P. J. Phys. Chem. C 2013, 117, 6504-6515) associated with the translational motion of the protons. The relationship between proton jumps and phosphate rotation was analyzed in detail by considering uncorrelated motion, motion of individual PO4 ions and the four connected/H-bonded protons, and concerted motions of adjacent phosphate units, mediated by proton hops. We conclude that, while phosphate rotations aid proton motion, not all phosphate rotations result in proton jumps.

19.
J Am Chem Soc ; 137(22): 7231-42, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25973552

RESUMO

Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

20.
J Chem Phys ; 142(9): 094701, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25747093

RESUMO

A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm. As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed NMR line shapes, our simulations must model the relatively slow exchange between different pores. We show that the computed NMR line shapes depend on both the pore size distribution and the spatial arrangement of the pores. The technique presented in this work provides a tool to extract information about the spatial distribution of pore sizes from NMR spectra. Such information is difficult to obtain from other characterisation techniques.


Assuntos
Carbono/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Simulação por Computador , Teste de Materiais , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA