Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
JAMA ; 328(8): 719-727, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997730

RESUMO

Importance: There remains a lack of randomized trials investigating aspirin monotherapy for symptomatic venous thromboembolism (VTE) prophylaxis following total hip arthroplasty (THA) or total knee arthroplasty (TKA). Objective: To determine whether aspirin was noninferior to enoxaparin in preventing symptomatic VTE after THA or TKA. Design, Setting, and Participants: Cluster-randomized, crossover, registry-nested trial across 31 hospitals in Australia. Clusters were hospitals performing greater than 250 THA or TKA procedures annually. Patients (aged ≥18 years) undergoing hip or knee arthroplasty procedures were enrolled at each hospital. Patients receiving preoperative anticoagulation or who had a medical contraindication to either study drug were excluded. A total of 9711 eligible patients were enrolled (5675 in the aspirin group and 4036 in the enoxaparin group) between April 20, 2019, and December 18, 2020. Final follow-up occurred on August 14, 2021. Interventions: Hospitals were randomized to administer aspirin (100 mg/d) or enoxaparin (40 mg/d) for 35 days after THA and for 14 days after TKA. Crossover occurred after the patient enrollment target had been met for the first group. All 31 hospitals were initially randomized and 16 crossed over prior to trial cessation. Main Outcomes and Measures: The primary outcome was symptomatic VTE within 90 days, including pulmonary embolism and deep venous thrombosis (DVT) (above or below the knee). The noninferiority margin was 1%. Six secondary outcomes are reported, including death and major bleeding within 90 days. Analyses were performed by randomization group. Results: Enrollment was stopped after an interim analysis determined the stopping rule was met, with 9711 patients (median age, 68 years; 56.8% female) of the prespecified 15 562 enrolled (62%). Of these, 9203 (95%) completed the trial. Within 90 days of surgery, symptomatic VTE occurred in 256 patients, including pulmonary embolism (79 cases), above-knee DVT (18 cases), and below-knee DVT (174 cases). The symptomatic VTE rate in the aspirin group was 3.45% and in the enoxaparin group was 1.82% (estimated difference, 1.97%; 95% CI, 0.54%-3.41%). This failed to meet the criterion for noninferiority for aspirin and was significantly superior for enoxaparin (P = .007). Of 6 secondary outcomes, none were significantly better in the enoxaparin group compared with the aspirin group. Conclusions and Relevance: Among patients undergoing hip or knee arthroplasty for osteoarthritis, aspirin compared with enoxaparin resulted in a significantly higher rate of symptomatic VTE within 90 days, defined as below- or above-knee DVT or pulmonary embolism. These findings may be informed by a cost-effectiveness analysis. Trial Registration: ANZCTR Identifier: ACTRN12618001879257.


Assuntos
Anticoagulantes , Artroplastia de Quadril , Artroplastia do Joelho , Aspirina , Enoxaparina , Tromboembolia Venosa , Idoso , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Artroplastia de Quadril/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Aspirina/efeitos adversos , Aspirina/uso terapêutico , Austrália , Quimioprevenção , Enoxaparina/efeitos adversos , Enoxaparina/uso terapêutico , Feminino , Humanos , Masculino , Osteoartrite/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Embolia Pulmonar/etiologia , Embolia Pulmonar/prevenção & controle , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle
2.
Intern Med J ; 51(5): 712-724, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359019

RESUMO

BACKGROUND: Understanding the health profile, service and medicine use of Australians in the aged care sector will help inform appropriate service provision for our ageing population. AIMS: To examine the 2006-2015 trends in (i) comorbidities and frailty of individuals accessing aged care, and (ii) health services, medicine use and mortality after entry into long-term care. METHODS: Cross-sectional and population-based trend analyses were conducted using the Registry of Senior Australians. RESULTS: From 2006 to 2015, 509 944 individuals accessed permanent residential care, 206 394 home care, 283 014 respite and 124 943 transition care. Over this time, the proportion of individuals accessing permanent residential care with high frailty scores (≥0.3) increased (19.7-49.7%), as did the proportion with 5-9 comorbidities (46.4-54.5%), with similar trends observed for those accessing other services. The median number of medicines dispensed in the year after entering permanent residential care increased from 9 (interquartile range (IQR) 6-12) to 10 (IQR 7-14), while remaining stable in home care (2006: 9, IQR 5-12, 2015: 9, IQR 6-13). Short-term (within 100 days) mortality in those accessing permanent care was higher in 2006 (15.6%, 95% CI 15.2-16.0) than 2015 (14.6%, 95% CI 14.3-14.9). Longer term (101-1095 days, 2006: 44.3%, 95% CI 43.7-45.0, 2015: 46.4%, 95% CI 45.8-46.9) mortality was higher in 2015 compared to 2006. Mortality in individuals accessing home care did not change. CONCLUSION: The health of older Australians accessing aged care programmes has declined while frailty increased, with an increasing use of medicine and worse long-term mortality in some. Funding and care models need to adapt to this changing profile.


Assuntos
Atenção à Saúde , Nível de Saúde , Idoso , Austrália/epidemiologia , Estudos Transversais , Humanos , Sistema de Registros
3.
Artigo em Inglês | MEDLINE | ID: mdl-29784838

RESUMO

Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 µg/ml and 0.031 µg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a ß-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/química , Depsipeptídeos/farmacologia , Endopeptidase Clp/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Ampicilina/farmacologia , Animais , Antibacterianos/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cristalografia por Raios X , Depsipeptídeos/química , Modelos Animais de Doenças , Combinação de Medicamentos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Enterococcus faecium/crescimento & desenvolvimento , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sepse/tratamento farmacológico , Sepse/microbiologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/enzimologia , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento
4.
J Phys Chem A ; 121(18): 3327-3339, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28388049

RESUMO

Aerosol and molecular processing in the atmosphere occurs in a complex and variable environment consisting of multiple phases and interfacial regions. To explore the effects of such conditions on the reactivity of chemical systems, we employ an environmental simulation chamber to investigate the multiphase photolysis of pyruvic acid, which photoreacts in the troposphere in aqueous particles and in the gas phase. Upon irradiation of nebulized pyruvic acid, acetic acid and carbon dioxide are rapidly generated, which is consistent with previous literature on the bulk phase photolysis reactions. Additionally, we identify a new C6 product, zymonic acid, a species that has not previously been reported from pyruvic acid photolysis under any conditions. Its observation here, and corresponding spectroscopic signatures, indicates it could be formed by heterogeneous reactions at the droplet surface. Prior studies of the aqueous photolysis of pyruvic acid have shown that high-molecular-weight compounds are formed via radical reactions; however, they are inhibited by the presence of oxygen, leading to doubt as to whether the chemistry would occur in the atmosphere. Identification of dimethyltartaric acid from the photolysis of multiphase pyruvic acid in air confirms radical polymerization chemistry can compete with oxygen reactions to some extent under aerobic conditions. Evidence of additional polymerization within the particles during irradiation is suggested by the increasing viscosity and organic content of the particles. The implications of multiphase specific processes are then discussed within the broader scope of atmospheric science.

5.
Bioorg Med Chem Lett ; 26(16): 3950-4, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27423480

RESUMO

The sulfonamide class of antibiotics has been in continuous use for over 70years. They are thought to act by directly inhibiting dihydropteroate synthase (DHPS), and also acting as prodrugs that sequester pterin pools by forming dead end pterin-sulfonamide conjugates. In this study, eight pterin-sulfonamide conjugates were synthesized using a novel synthetic strategy and their biochemical and microbiological properties were investigated. The conjugates were shown to competitively inhibit DHPS, and inhibition was enhanced by the presence of pyrophosphate that is crucial to catalysis and is known to promote an ordering of the DHPS active site. The co-crystal structure of Yersinia pestis DHPS bound to one of the more potent conjugates revealed a mode of binding that is similar to that of the enzymatic product analog pteroic acid. The antimicrobial activities of the pterin-sulfonamide conjugates were measured against Escherichia coli in the presence and absence of folate precursors and dependent metabolites. These results show that the conjugates have appreciable antibacterial activity and act by an on target, anti-folate pathway mechanism rather than as simple dead end products.


Assuntos
Antibacterianos/química , Di-Hidropteroato Sintase/antagonistas & inibidores , Pterinas/química , Sulfonamidas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/metabolismo , Escherichia coli/efeitos dos fármacos , Ácido Fólico/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Yersinia pestis/enzimologia
6.
Proc Natl Acad Sci U S A ; 110(29): 11714-9, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23821751

RESUMO

The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.


Assuntos
Aerossóis/química , Atmosfera/química , Luz , Fotoquímica/métodos , Ácido Pirúvico/química , Água/química , Ácido Acético/química , Acetoína/química , Ácido Láctico/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Fotólise
7.
Proc Natl Acad Sci U S A ; 109(39): 15697-701, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22927374

RESUMO

We report unambiguous spectroscopic evidence of peptide bond formation at the air-water interface, yielding a possible mechanism providing insight into the formation of modern ribosomal peptide bonds, and a means for the emergence of peptides on early Earth. Protein synthesis in aqueous environments, facilitated by sequential amino acid condensation forming peptides, is a ubiquitous process in modern biology, and a fundamental reaction necessary in prebiotic chemistry. Such reactions, however, are condensation reactions, requiring the elimination of a water molecule for every peptide bond formed, and are thus unfavorable in aqueous environments both from a thermodynamic and kinetic point of view. We use the hydrophobic environment of the air-water interface as a favorable venue for peptide bond synthesis, and demonstrate the occurrence of this chemistry with in situ techniques using Langmuir-trough methods and infrared reflection absorption spectroscopy. Leucine ethyl ester (a small amino acid ester) first partitions to the water surface, then coordinates with Cu(2+) ions at the interface, and subsequently undergoes a condensation reaction selectively forming peptide bonds at the air-water interface.


Assuntos
Ar , Peptídeos/química , Água/química , Cobre/química , Interações Hidrofóbicas e Hidrofílicas
8.
J Am Chem Soc ; 136(10): 3784-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559493

RESUMO

The aqueous photochemistry of 2-oxooctanoic acid (a single-tailed surfactant) results in the synthesis of a double-tailed surfactant product followed by spontaneous self-assembly into vesicles. The photochemical mechanism is detailed here, and the reaction products are identified using mass spectrometry. Then, the self-assembled vesicles are characterized using dynamic light scattering, fluorescence microscopy, and NMR. Further, their stability over time and in the presence of MgCl2 salt is demonstrated. This work contributes to membrane evolution through the provision of a prebiotic route for the synthesis of plausible membrane components and subsequent self-assembly of a primitive enclosure.

9.
J Phys Chem A ; 118(37): 8505-16, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24725260

RESUMO

Pyruvic acid in the atmosphere is found in both the gas and aqueous phases, and its behavior gives insight into that of other α-keto acids. Photolysis is a significant degradation pathway for this molecule in the environment, and in aqueous solution the major photoproducts are higher-molecular-weight compounds that may contribute to secondary organic aerosol mass. The kinetics of the aqueous-phase photolysis of pyruvic acid under aerobic and anaerobic conditions was investigated in order to calculate the first-order rate constant, Jaq, in solution. Analysis of the exponential decay of pyruvic acid was performed by monitoring both pyruvic acid and its photolytic products over the course of the reaction by (1)H NMR spectroscopy. Detection of major and minor products in the 0.1, 0.05, and 0.02 M pyruvic acid photolyses clearly demonstrates that the primary reaction pathways are highly dependent on the initial pyruvic acid concentration and the presence of dissolved oxygen. The Jaq values were calculated with approximations based on the dominant pathways for limiting cases of the mechanism. Finally, a model study using the calculated rate constants demonstrates the importance of aqueous-phase photolysis as a sink for pyruvic acid in the atmosphere, compared with gas-phase photolysis and OH oxidation.

10.
J Am Chem Soc ; 135(2): 710-6, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23240998

RESUMO

The ionization state of organic molecules at the air-water interface and the related problem of the surface pH of water have significant consequences on the catalytic role of the surface in chemical reactions and are currently areas of intense research and controversy. In this work, infrared reflection-absorption spectroscopy (IRRAS) is used to identify changes in the ionization state of L-phenylalanine in the surface region versus the bulk aqueous solution. L-phenylalanine has the unique advantage of possessing two different hydrophilic groups, a carboxylic acid and an amine base, which can deprotonate and protonate respectively depending on the ionic environment they experience at the water surface. In this work, the polar group vibrations in the surface region are identified spectroscopically in varying bulk pH solutions, and are subsequently compared with the ionization state of the polar groups of molecules residing in the bulk environment. The polar groups of L-phenylalanine at the surface transition to their deprotonated state at bulk pH values lower than the molecules residing in the bulk, indicating a decrease in their pK(a) at the surface, and implying an enhanced hydroxide ion concentration in the surface region relative to the bulk.


Assuntos
Fenilalanina/química , Água/química , Ar , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Estrutura Molecular , Soluções/química , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
11.
Acc Chem Res ; 45(12): 2106-13, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22509900

RESUMO

The prebiotic conversion of simple organic molecules into complex biopolymers necessary for life can only have emerged on a stage set by geophysics. The transition between "prebiotic soup," the diverse mixture of small molecules, and complex, self-replicating organisms requires passing through the bottleneck of fundamental chemistry. In this Account, we examine how water-air interfaces, namely, the surfaces of lakes, oceans, and atmospheric aerosols on ancient Earth, facilitated the emergence of complex structures necessary for life. Aerosols are liquid or solid suspensions in air with a broad, power law size distribution. Collectively, these globally distributed atmospheric particles have an enormous surface area. Organic films at the interface between water and air offer advantages for biomolecular synthesis compared with the bulk and can simultaneously participate in the folding of biopolymers into primitive enclosed structures. We survey the advantages of the water-air interface for prebiotic chemistry in a geophysical context from three points of view. We examine the formation of biopolymers from simple organic precursors and describe the necessity and availability of enclosures. In addition, we provide a statistical mechanical approach to natural selection and emergence of complexity that proposes a link between these molecular mechanisms and macroscopic scales. Very large aerosol populations were ubiquitous on ancient Earth, and the surfaces of lakes, oceans, and atmospheric aerosols would have provided an auspicious environment for the emergence of complex structures necessary for life. These prebiotic reactors would inevitably have incorporated the products of chemistry into their anhydrous, two-dimensional organic films in the three-dimensional fluids of the gaseous atmosphere and the liquid ocean. The untrammeled operation of natural selection on these aerosols provided the likely location where condensation reactions could form biopolymers by elimination of water. The fluctuating exposure of the large, recycling aerosol populations to radiation, pressure, temperature, and humidity over geological time allows complexity to emerge from simple molecular precursors. We propose an approach that connects chemical statistical thermodynamics and the macroscopic world of the planetary ocean and atmosphere.


Assuntos
Atmosfera/química , Oceanos e Mares , Aerossóis/química , Ar , Cinética , Temperatura , Termodinâmica , Água/química
12.
Orig Life Evol Biosph ; 43(4-5): 341-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24362712

RESUMO

Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.


Assuntos
Evolução Química , Ácido Pirúvico/química , Raios Ultravioleta , Acetoína/química , Aerossóis/química , Atmosfera/química , Carbono/química , Ácido Láctico/química , Espectroscopia de Ressonância Magnética , Espectrofotometria Ultravioleta , Água/química
13.
JAMA Netw Open ; 6(6): e2317838, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294566

RESUMO

Importance: Ischemic heart disease remains the leading cause of mortality following hip and knee arthroplasty. Due to its antiplatelet and cardioprotective properties, aspirin has been proposed as an agent that could reduce mortality when used as venous thromboembolism (VTE) prophylaxis following these procedures. Objective: To compare aspirin with enoxaparin in reducing 90-day mortality for patients undergoing hip or knee arthroplasty procedures. Design, Setting, and Participants: This study was a planned secondary analysis of the CRISTAL cluster randomized, crossover, registry-nested trial performed across 31 participating hospitals in Australia between April 20, 2019, and December 18, 2020. The aim of the CRISTAL trial was to determine whether aspirin was noninferior to enoxaparin in preventing symptomatic VTE following hip or knee arthroplasty. The primary study restricted the analysis to patients undergoing total hip or knee arthroplasty for a diagnosis of osteoarthritis only. This study includes all adult patients (aged ≥18 years) undergoing any hip or knee arthroplasty procedure at participating sites during the course of the trial. Data were analyzed from June 1 to September 6, 2021. Interventions: Hospitals were randomized to administer all patients oral aspirin (100 mg daily) or subcutaneous enoxaparin (40 mg daily) for 35 days after hip arthroplasty and 14 days after knee arthroplasty procedures. Main Outcomes and Measures: The primary outcome was mortality within 90 days. The between-group difference in mortality was estimated using cluster summary methods. Results: A total of 23 458 patients from 31 hospitals were included, with 14 156 patients allocated to aspirin (median [IQR] age, 69 [62-77] years; 7984 [56.4%] female) and 9302 patients allocated to enoxaparin (median [IQR] age, 70 [62-77] years; 5277 [56.7%] female). The mortality rate within 90 days of surgery was 1.67% in the aspirin group and 1.53% in the enoxaparin group (estimated difference, 0.04%; 95% CI, -0.05%-0.42%). For the subgroup of 21 148 patients with a nonfracture diagnosis, the mortality rate was 0.49% in the aspirin group and 0.41% in the enoxaparin group (estimated difference, 0.05%; 95% CI, -0.67% to 0.76%). Conclusions and Relevance: In this secondary analysis of a cluster randomized trial comparing aspirin with enoxaparin following hip or knee arthroplasty, there was no significant between-group difference in mortality within 90 days when either drug was used for VTE prophylaxis. Trial Registration: http://anzctr.org.au Identifier: ACTRN12618001879257.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Tromboembolia Venosa , Adulto , Humanos , Feminino , Adolescente , Idoso , Masculino , Enoxaparina/uso terapêutico , Enoxaparina/efeitos adversos , Aspirina/uso terapêutico , Tromboembolia Venosa/tratamento farmacológico , Artroplastia do Joelho/efeitos adversos , Artroplastia de Quadril/efeitos adversos
14.
Tuberculosis (Edinb) ; 132: 102157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894561

RESUMO

The peptide binding protein DppA is an ABC transporter found in prokaryotes that has the potential to be used as drug delivery tool for hybrid antibiotic compounds. Understanding the motifs and structures that bind to DppA is critical to the development of these bivalent compounds. This study focused on the biophysical analysis of the MtDppA from M. tuberculosis. Analysis of the crystal structure revealed a SVA tripeptide was co-crystallized with the protein. Further peptide analysis demonstrated MtDppA shows very little affinity for dipeptides but rather preferentially binds to peptides that are 3-4 amino acids in length. The structure-activity relationships (SAR) between MtDppA and tripeptides with varied amino acid substitutions were evaluated using thermal shift, SPR, and molecular dynamics simulations. Efforts to identify novel ligands for use as alternative scaffolds through the thermal shift screening of 35,000 compounds against MtDppA were unsuccessful, indicating that the MtDppA binding pocket is highly specialized for uptake of peptides. Future development of compounds that seek to utilize MtDppA as a drug delivery mechanism, will likely require a tri- or tetrapeptide component with a hydrophobic -non-acidic peptide sequence.


Assuntos
Proteínas de Transporte/genética , Mycobacterium tuberculosis/genética , Peptídeos/genética , Proteínas de Transporte/biossíntese , Humanos , Mycobacterium tuberculosis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/estatística & dados numéricos
15.
ACS Med Chem Lett ; 13(10): 1621-1627, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262390

RESUMO

Targeted protein degradation is a powerful induced-proximity tool to control cellular protein concentrations using small molecules. However, the design of selective degraders remains empirical. Among bromodomain and extra-terminal (BET) family proteins, BRD4 is the primary therapeutic target over family members BRD2/3/T. Existing strategies for selective BRD4 degradation use pan-BET inhibitors optimized for BRD4:E3 ubiquitin ligase (E3) ternary complex formation, but these result in residual inhibition of undegraded BET-bromodomains by the pan-BET ligand, obscuring BRD4-degradation phenotypes. Using our selective inhibitor of the first BRD4 bromodomain, iBRD4-BD1 (IC50 = 12 nM, 23- to 6200-fold intra-BET selectivity), we developed dBRD4-BD1 to selectively degrade BRD4 (DC50 = 280 nM). Notably, dBRD4-BD1 upregulates BRD2/3, a result not observed with degraders using pan-BET ligands. Designing BRD4 selectivity up front enables analysis of BRD4 biology without wider BET-inhibition and simplifies designing BRD4-selective heterobifunctional molecules, such as degraders with new E3 recruiting ligands or for additional probes beyond degraders.

16.
J Med Chem ; 65(3): 2342-2360, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007061

RESUMO

Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Imidazóis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
18.
ACS Infect Dis ; 7(5): 1044-1058, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33471519

RESUMO

The successful treatment of Helicobacter pylori infections is becoming increasingly difficult due to the rise of resistance against current broad spectrum triple therapy regimens. In the search for narrow-spectrum agents against H. pylori, a high-throughput screen identified two structurally related thienopyrimidine compounds that selectively inhibited H. pylori over commensal members of the gut microbiota. To develop the structure-activity relationship (SAR) of the thienopyrimidines against H. pylori, this study employed four series of modifications in which systematic substitution to the thienopyrimidine core was explored and ultimately side-chain elements optimized from the two original hits were merged into lead compounds. During the development of this series, the mode of action studies identified H. pylori's respiratory complex I subunit NuoD as the target for lead thienopyrimidines. As this enzyme complex is uniquely essential for ATP synthesis in H. pylori, a homology model of the H. pylori NuoB-NuoD binding interface was generated to help rationalize the SAR and guide further development of the series. From these studies, lead compounds emerged with increased potency against H. pylori, improved safety indices, and a good overall pharmacokinetic profile with the exception of high protein binding and poor solubility. Although lead compounds in the series demonstrated efficacy in an ex vivo infection model, the compounds had no efficacy in a mouse model of H. pylori infection. Additional optimization of pharmacological properties of the series to increase solubility and free-drug levels at the sequestered sites of H. pylori infection would potentially result in a gain of in vivo efficacy. The thienopyrimidine series developed in this study demonstrates that NuoB-NuoD of the respiratory complex I can be targeted for development of novel narrow spectrum agents against H. pylori and that thienopyrimines can serve as the basis for future advancement of these studies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Antibacterianos/farmacologia , Complexo I de Transporte de Elétrons , Infecções por Helicobacter/tratamento farmacológico , Camundongos , Pirimidinas
19.
Nat Commun ; 11(1): 4931, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004795

RESUMO

Testis-restricted melanoma antigen (MAGE) proteins are frequently hijacked in cancer and play a critical role in tumorigenesis. MAGEs assemble with E3 ubiquitin ligases and function as substrate adaptors that direct the ubiquitination of novel targets, including key tumor suppressors. However, how MAGEs recognize their targets is unknown and has impeded the development of MAGE-directed therapeutics. Here, we report the structural basis for substrate recognition by MAGE ubiquitin ligases. Biochemical analysis of the degron motif recognized by MAGE-A11 and the crystal structure of MAGE-A11 bound to the PCF11 substrate uncovered a conserved substrate binding cleft (SBC) in MAGEs. Mutation of the SBC disrupted substrate recognition by MAGEs and blocked MAGE-A11 oncogenic activity. A chemical screen for inhibitors of MAGE-A11:substrate interaction identified 4-Aminoquinolines as potent inhibitors of MAGE-A11 that show selective cytotoxicity. These findings provide important insights into the large family of MAGE ubiquitin ligases and identify approaches for developing cancer-specific therapeutics.


Assuntos
Antígenos de Neoplasias/ultraestrutura , Proteínas de Neoplasias/ultraestrutura , Neoplasias/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Motivos de Aminoácidos , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Mutagênese , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Estudo de Prova de Conceito , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Domínios Proteicos/genética , Mapeamento de Interação de Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
20.
ACS Infect Dis ; 6(3): 467-478, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31887254

RESUMO

Increasing rates of drug-resistant Gram-negative (GN) infections, combined with a lack of new GN-effective antibiotic classes, are driving the need for the discovery of new agents. Bacterial metabolism represents an underutilized mechanism of action in current antimicrobial therapies. Therefore, we sought to identify novel antimetabolites that disrupt key metabolic pathways and explore the specific impacts of these agents on bacterial metabolism. This study describes the successful application of this approach to discover a new series of chemical probes, N-(phenyl)thioacetamide-linked 1,2,3-triazoles (TAT), that target cysteine synthase A (CysK), an enzyme unique to bacteria that is positioned at a key juncture between several fundamental pathways. The TAT class was identified using a high-throughput screen against Escherichia coli designed to identify modulators of pathways related to folate biosynthesis. TAT analog synthesis demonstrated a clear structure-activity relationship, and activity was confirmed against GN antifolate-resistant clinical isolates. Spontaneous TAT resistance mutations were tracked to CysK, and mode of action studies led to the identification of a false product formation mechanism between the CysK substrate O-acetyl-l-serine and the TATs. Global transcriptional responses to TAT treatment revealed that these antimetabolites impose substantial disruption of key metabolic networks beyond cysteine biosynthesis. This study highlights the potential of antimetabolite drug discovery as a promising approach to the discovery of novel GN antibiotics and the pharmacological promise of TAT CysK probes.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Cisteína/biossíntese , Escherichia coli/efeitos dos fármacos , Tioacetamida/farmacologia , Triazóis/farmacologia , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Descoberta de Drogas , Escherichia coli/enzimologia , Ensaios de Triagem em Larga Escala , Redes e Vias Metabólicas/efeitos dos fármacos , Tioacetamida/química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA