Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(18): 4909-4912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707934

RESUMO

Relying on Feynman-Kac path-integral methodology, we present a new statistical perspective on wave single-scattering by complex three-dimensional objects. The approach is implemented on three models-Schiff approximation, Born approximation, and rigorous Born series-and familiar interpretative difficulties such as the analysis of moments over scatterer distributions (size, orientation, shape, etc.) are addressed. In terms of the computational contribution, we show that commonly recognized features of the Monte Carlo method with respect to geometric complexity can now be available when solving electromagnetic scattering.

2.
Mar Drugs ; 17(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288477

RESUMO

Cystoseira barbata is an edible brown seaweed, traditionally used in the Black Sea area as functional food. Both alginate and brown seaweed biomass are well known for their potential use as adsorbents for heavy metals. Alginate was extracted from C. barbata recovered from the Romanian coast on the Black Sea with a yield of 19 ± 1.5% (w/w). The structural data for the polysaccharide was obtained by HPSEC-MALS, 1H-NMR. The M/G ratio was determined to be 0.64 with a molecular weight of 126.6 kDa with an intrinsic viscosity of 406.2 mL/g. Alginate beads were used and their adsorption capacity with respect to Pb2+ and Cu2+ ions was determined. The adsorption kinetics of C. barbata dry biomass was evaluated and it was shown to have an adsorption capacity of 279.2 ± 7.5 mg/g with respect to Pb2+, and 69.3 ± 2 with respect to Cu2+. Alginate in the form of beads adsorbs a maximum of 454 ± 4.7 mg/g of Pb2+ ions and 107.3 ± 1.7 mg/g of Cu2+ ions.


Assuntos
Alginatos/química , Alga Marinha/química , Adsorção , Biomassa , Mar Negro , Metais Pesados/química , Peso Molecular , Polissacarídeos/química , Romênia , Viscosidade
3.
PLoS One ; 16(7): e0255002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293011

RESUMO

Most chemical reactions promoted by light and using a photosensitizer (a dye) are subject to the phenomenon of luminescence. Redistribution of light in all directions (isotropic luminescence emission) and in a new spectral range (luminescence emission spectrum) makes experimental and theoretical studies much more complex compared to a situation with a purely absorbing reaction volume. This has a significant impact on the engineering of photoreactors for industrial applications. Future developments associated with photoreactive system optimization are therefore extremely challenging, and require an in-depth description and quantitative analysis of luminescence. In this study, a radiative model describing the effect of luminescence radiation on the calculation of absorptance is presented and analyzed with the multiple inelastic-scattering approach, using Monte Carlo simulations. The formalism of successive orders of scattering expansion is used as a sophisticated analysis tool which provides, when combined with relevant physical approximations, convenient analytical approximate solutions. Its application to four photosensitizers that are representative of renewable hydrogen production via artificial photosynthesis indicates that luminescence has a significant impact on absorptance and on overall quantum yield estimation, with the contribution of multiple scattering and important spectral effects due to inelastic scattering. We show that luminescence cannot be totally neglected in that case, since photon absorption lies at the root of the chemical reaction. We propose two coupled simple and appropriate analytical approximations enabling the estimation of absorptance with a relative error below 6% in every tested situation: the zero-order scattering approximation and the gray single-scattering approximation. Finally, this theoretical approach is used to determine and discuss the overall quantum yield of a bio-inspired photoreactive system with Eosin Y as a photosensitizer, implemented in an experimental setup comprising a photoreactor dedicated to hydrogen production.


Assuntos
Luminescência , Modelos Químicos , Fármacos Fotossensibilizantes/química , Fotossíntese , Luz Solar , Medições Luminescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA