Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycoconj J ; 16(1): 13-7, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10580646

RESUMO

The synthesis of thiosialosides as potential biological probes for investigations involving the use of sialic acid-recognising proteins has been reinvestigated. It has been found that the most efficient method for the preparation of thiosialosides free from any 2,3-didehydro sialic acid contaminants involves an intermediate HPLC purification of thiosialosides as their methyl esters. Subsequent methyl ester hydrolysis provides thiosialosides (eg. 6 and 14) which are suitable for studies involving the use of sialic acid-recognising proteins.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácido N-Acetilneuramínico/química , Tioglicosídeos/química , Sensibilidade e Especificidade , Ácidos Siálicos/química
2.
Biochem Biophys Res Commun ; 280(1): 104-9, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11162485

RESUMO

We found that the hepatopancreas of oyster, Crassostrea virginica, contained a sialidase capable of releasing Neu5Gc from the novel polysialic acid chain (-->5-O(glycolyl)Neu5Gcalpha2-->)n more efficiently than from the conventional type of polysialic acid chains, (-->8Neu5Acalpha2-->)n, or (-->8Neu5Gcalpha2-->)n. We have partially purified this novel sialidase and compared its reactivity with that of microbial sialidases using four different sialic acid dimers, Neu5Gcalpha2-->5-O(glycolyl)Neu5Gc (Gg2), Neu5Acalpha2-->8Neu5Ac (A2), Neu5Gcalpha2-->8Neu5Gc (G2), and KDNalpha2-->8KDN (K2) as substrates. Hydrolysis was monitored by high performance anion-exchange chromatography with a CarboPac PA-100 column and pulsed amperometric detection, the method by which we can accurately quantitate both the substrate (sialiac acid dimers) and the product (sialic acid monomers). The oyster sialidase effectively hydrolyzed Gg2 and K2, whereas A2 and G2 were poor substrates. Neu5Ac2en but not KDN2en effectively inhibited the hydrolysis of Gg2 by the oyster sialidase. Likewise, the hydrolysis of K2 by the oyster sialidase was inhibited by a cognate inhibitor, KDN2en, but not by Neu5Ac2en. Using the new analytical method we found that Gg2 was hydrolyzed less efficiently than A2 but much more readily than G2 by Arthrobacter ureafaciens sialidase. This result was at variance with the previous report using the thiobarbituric acid method to detect the released free sialic acid [Kitazume, S., et al. (1994) Biochem. Biophys. Res. Commun. 205, 893-898]. In agreement with previous results, Gg2 was a poor substrate for Clostridium perfringens sialidase, while K2 was refractory to all microbial sialidases tested. Thus, the oyster sialidase is novel and distinct from microbial sialidases with regards to glycon- and linkage-specificity. This finding adds an example of the presence of diverse sialidases, in line with the diverse sialic acids and sialic acid linkages that exist in nature. The new sialidase should become useful for both structural and functional studies of sialoglycoconjugates.


Assuntos
Arthrobacter/enzimologia , Clostridium perfringens/enzimologia , Sistema Digestório/enzimologia , Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Vibrio cholerae/enzimologia , Animais , Cromatografia em Gel , Cromatografia por Troca Iônica , Dimerização , Eletroquímica , Cinética , Neuraminidase/isolamento & purificação , Ostreidae , Antígeno Sialil Lewis X , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA