Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Scand J Clin Lab Invest ; 84(2): 115-120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587086

RESUMO

The recently discovered selective glomerular hypofiltration syndromes have increased interest in the actual elimination of molecules in the human kidney. In the present study, a novel human model was introduced to directly measure the single-pass renal elimination of molecules of increasing size. Plasma concentrations of urea, creatinine, C-peptide, insulin, pro-BNP, ß2-microglobulin, cystatin C, troponin-T, orosomucoid, albumin, and IgG were analysed in arterial and renal venous blood from 45 patients undergoing Transcatheter Aortic Valve Implantation (TAVI). The renal elimination ratio (RER) was calculated as the arteriovenous concentration difference divided by the arterial concentration. Estimated glomerular filtration rate (eGFR) was calculated by the CKD-EPI equations for both creatinine and cystatin C. Creatinine (0.11 kDa) showed the highest RER (21.0 ± 6.3%). With increasing molecular size, the RER gradually decreased, where the RER of cystatin C (13 kDa) was 14.4 ± 5.3% and troponin-T (36 kDa) was 11.3 ± 4.6%. The renal elimination threshold was found between 36 and 44 kDa as the RER of orosomucoid (44 kDa) was -0.2 ± 4.7%. The RER of creatinine and cystatin C showed a significant and moderate positive linear relationship with eGFR (r = 0.48 and 0.40). In conclusion, a novel human model was employed to demonstrate a decline in renal elimination with increasing molecular size. Moreover, RERs of creatinine and cystatin C were found to correlate with eGFR, suggesting the potential of this model to study selective glomerular hypofiltration syndromes.


Assuntos
Creatinina , Cistatina C , Taxa de Filtração Glomerular , Rim , Humanos , Cistatina C/sangue , Masculino , Creatinina/sangue , Feminino , Idoso , Rim/metabolismo , Idoso de 80 Anos ou mais , Troponina T/sangue , Microglobulina beta-2/sangue , Ureia/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo C/sangue , Insulina/sangue , Modelos Biológicos , Imunoglobulina G/sangue
2.
J Intern Med ; 293(3): 293-308, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385445

RESUMO

Estimation of kidney function is often part of daily clinical practice, mostly done by using the endogenous glomerular filtration rate (GFR)-markers creatinine or cystatin C. A recommendation to use both markers in parallel in 2010 has resulted in new knowledge concerning the pathophysiology of kidney disorders by the identification of a new set of kidney disorders, selective glomerular hypofiltration syndromes. These syndromes, connected to strong increases in mortality and morbidity, are characterized by a selective reduction in the glomerular filtration of 5-30 kDa molecules, such as cystatin C, compared to the filtration of small molecules <1 kDa dominating the glomerular filtrate, for example water, urea and creatinine. At least two types of such disorders, shrunken or elongated pore syndrome, are possible according to the pore model for glomerular filtration. Selective glomerular hypofiltration syndromes are prevalent in investigated populations, and patients with these syndromes often display normal measured GFR or creatinine-based GFR-estimates. The syndromes are characterized by proteomic changes promoting the development of atherosclerosis, indicating antibodies and specific receptor-blocking substances as possible new treatment modalities. Presently, the KDIGO guidelines for diagnosing kidney disorders do not recommend cystatin C as a general marker of kidney function and will therefore not allow the identification of a considerable number of patients with selective glomerular hypofiltration syndromes. Furthermore, as cystatin C is uninfluenced by muscle mass, diet or variations in tubular secretion and cystatin C-based GFR-estimation equations do not require controversial race or sex terms, it is obvious that cystatin C should be a part of future KDIGO guidelines.


Assuntos
Cistatina C , Nefropatias , Humanos , Proteoma , Creatinina , Proteômica , Taxa de Filtração Glomerular/fisiologia , Nefropatias/diagnóstico , Biomarcadores
3.
J Mol Cell Cardiol ; 93: 12-7, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26906633

RESUMO

The activity of phospholipase Cß1b (PLCß1b) is selectively elevated in failing myocardium and cardiac expression of PLCß1b causes contractile dysfunction. PLCß1b can be selectively inhibited by expressing a peptide inhibitor that prevents sarcolemmal localization. The inhibitory peptide, PLCß1b-CT was expressed in heart from a mini-gene using adeno-associated virus (rAAV6-PLCß1b-CT). rAAV6-PLCß1b-CT, or blank virus, was delivered IV (4×10(9)vg/g body weight) and trans-aortic-constriction (TAC) or sham-operation was performed 8weeks later. Expression of PLCß1b-CT prevented the loss of contractile function, eliminated lung congestion and improved survival following TAC with either a 'moderate' or 'severe' pressure gradient. Hypertrophy was attenuated but not eliminated. Expression of the PLCß1b-CT peptide 2-3weeks after TAC reduced contractile dysfunction and lung congestion, without limiting hypertrophy. PLCß1b inhibition ameliorates pathological responses following acute pressure overload. The targeting of PLCß1b to the sarcolemma provides the basis for the development of a new class of inotropic agent.


Assuntos
Expressão Gênica , Contração Muscular/genética , Fragmentos de Peptídeos/genética , Fosfolipase C beta/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Aorta/efeitos dos fármacos , Aorta/fisiologia , Cardiomegalia/diagnóstico , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo , Dependovirus/genética , Ecocardiografia , Vetores Genéticos/genética , Hemodinâmica , Masculino , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Fragmentos de Peptídeos/farmacologia , Fosfolipase C beta/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Transdução Genética
4.
J Mol Cell Cardiol ; 84: 95-103, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25918049

RESUMO

The activity of the early signaling enzyme, phospholipase Cß1b (PLCß1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCß1b activity to cardiac pathology. PLCß1b, the alternative splice variant, PLCß1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCß1b, rAAV6-FLAG-PLCß1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCß1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCß1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCß1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCß1b, but not PLCß1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCß1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCß1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.


Assuntos
Processamento Alternativo/genética , Coração/fisiopatologia , Contração Miocárdica , Fosfolipase C beta/genética , Administração Intravenosa , Processamento Alternativo/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/metabolismo , Fibrose , Coração/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ultrassonografia
5.
Biochem Biophys Res Commun ; 461(3): 519-24, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25911318

RESUMO

Phospholipase Cß1b (PLCß1b) is an atypical splice variant of PLCß1 that has a C-terminal proline-rich sequence instead of the PDZ-interacting motif common to other PLCß subtypes. PLCß1b targets to the cardiomyocyte sarcolemma through an undefined association with the scaffolding protein Shank3. The C-terminal splice variant specific sequence of PLCß1b bound to deletion mutants of Shank3 that included the SH3 domain, but not to constructs lacking this domain. Mutating proline residues in the extreme C-terminal region of PLCß1b prevented the interaction between PLCß1b and Shank3 resulting in reduced sarcolemmal localization and downstream signalling responses. We conclude that PLCß1b activation and downstream signalling require the association of a previously unidentified C-terminal proline-rich motif with the SH3 domain of Shank3. PLCß1b is the first confirmed protein ligand for the SH3 domain of Shank3.


Assuntos
Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C beta/metabolismo , Domínios de Homologia de src , Animais , Sítios de Ligação , Ativação Enzimática , Miócitos Cardíacos/enzimologia
6.
Proc Natl Acad Sci U S A ; 109(16): 6165-70, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474353

RESUMO

Mitochondrial complex I (CI) deficiency is the most common mitochondrial enzyme defect in humans. Treatment of mitochondrial disorders is currently inadequate, emphasizing the need for experimental models. In humans, mutations in the NDUFS6 gene, encoding a CI subunit, cause severe CI deficiency and neonatal death. In this study, we generated a CI-deficient mouse model by knockdown of the Ndufs6 gene using a gene-trap embryonic stem cell line. Ndufs6(gt/gt) mice have essentially complete knockout of the Ndufs6 subunit in heart, resulting in marked CI deficiency. Small amounts of wild-type Ndufs6 mRNA are present in other tissues, apparently due to tissue-specific mRNA splicing, resulting in milder CI defects. Ndufs6(gt/gt) mice are born healthy, attain normal weight and maturity, and are fertile. However, after 4 mo in males and 8 mo in females, Ndufs6(gt/gt) mice are at increased risk of cardiac failure and death. Before overt heart failure, Ndufs6(gt/gt) hearts show decreased ATP synthesis, accumulation of hydroxyacylcarnitine, but not reactive oxygen species (ROS). Ndufs6(gt/gt) mice develop biventricular enlargement by 1 mo, most pronounced in males, with scattered fibrosis and abnormal mitochondrial but normal myofibrillar ultrastructure. Ndufs6(gt/gt) isolated working heart preparations show markedly reduced left ventricular systolic function, cardiac output, and functional work capacity. This reduced energetic and functional capacity is consistent with a known susceptibility of individuals with mitochondrial cardiomyopathy to metabolic crises precipitated by stresses. This model of CI deficiency will facilitate studies of pathogenesis, modifier genes, and testing of therapeutic approaches.


Assuntos
Cardiomiopatias/genética , Doenças Mitocondriais/genética , Mutagênese Insercional , NADH Desidrogenase/genética , Splicing de RNA , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Coração/fisiopatologia , Humanos , Técnicas In Vitro , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , NADH Desidrogenase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Pharmacol ; 86(4): 399-405, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049082

RESUMO

Cardiomyocyte hypertrophy requires a source of Ca(2+) distinct from the Ca(2+) that regulates contraction. The canonical transient receptor potential channel (TrpC) family, a family of cation channels regulated by activation of phospholipase C (PLC), has been implicated in this response. Cardiomyocyte hypertrophy downstream of Gq-coupled receptors is mediated specifically by PLCß1b that is scaffolded onto a SH3 and ankyrin repeat protein 3 (Shank3) complex at the sarcolemma. TrpC4 exists as two splice variants (TrpC4α and TrpC4ß) that differ only in an 84-residue sequence that binds to phosphatidylinositol(4,5)bisphosphate (PIP2), the substrate of PLCß1b. In neonatal rat cardiomyocytes, TrpC4α, but not TrpC4ß, coimmunoprecipitated with both PLCß1b and Shank3. Heightened PLCß1b expression caused TrpC4α, but not TrpC4ß, translocation to the sarcolemma, where it colocalized with PLCß1b. When overexpressed in cardiomyocytes, TrpC4α, but not TrpC4ß, increased cell area (893 ± 18 to 1497 ± 29 mm(2), P < 0.01) and marker gene expression (atrial natriuretic peptide increased by 409 ± 32%, and modulatory calcineurin inhibitory protein 1 by 315 ± 28%, P < 0.01). Dominant-negative TrpC4 reduced hypertrophy initiated by PLCß1b, or PLCß1b-coupled receptor activation, by 72 ± 8% and 39 ± 5 %, respectively. We conclude that TrpC4α is selectively involved in mechanisms downstream of PLCß1b culminating in cardiomyocyte hypertrophy, and that the hypertrophic response is dependent on the TrpC4α splice variant-specific sequence that binds to PIP2.


Assuntos
Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Masculino , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética
9.
J Appl Crystallogr ; 57(Pt 4): 1127-1136, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108810

RESUMO

Small-angle X-ray and neutron scattering (SAXS and SANS) patterns from certain semicrystalline polymers and liquid crystals contain discrete reflections from ordered assemblies and central diffuse scattering (CDS) from uncorrelated structures. Systems with imperfectly ordered lamellar structures aligned by stretching or by a magnetic field produce four distinct SAXS patterns: two-point 'banana', four-point pattern, four-point 'eyebrow' and four-point 'butterfly'. The peak intensities of the reflections lie not on a layer line, or the arc of a circle, but on an elliptical trajectory. Modeling shows that randomly placed lamellar stacks modified by chain slip and stack rotation or interlamellar shear can create these forms. On deformation, the isotropic CDS becomes an equatorial streak with an oval, diamond or two-bladed propeller shape, which can be analyzed by separation into isotropic and oriented components. The streak has elliptical intensity contours, a natural consequence of the imperfect alignment of the elongated scattering objects. Both equatorial streaks and two- and four-point reflections can be fitted in elliptical coordinates with relatively few parameters. Equatorial streaks can be analyzed to obtain the size and orientation of voids, fibrils or surfaces. Analyses of the lamellar reflection yield lamellar spacing, stack orientation (interlamellar shear) angle α and chain slip angle ϕ, as well as the size distribution of the lamellar stacks. Currently available computational tools allow these microstructural parameters to be rapidly refined.

10.
J Mol Cell Cardiol ; 54: 19-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23137780

RESUMO

Autophagy is a process that removes damaged proteins and organelles and is of particular importance in terminally differentiated cells such as cardiomyocytes, where it has primarily a protective role. We investigated the involvement of inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) and its receptors in autophagic responses in neonatal rat ventricular myocytes (NRVM). Treatment with the IP(3)-receptor (IP(3)-R) antagonist 2-aminoethoxydiphenyl borate (2-APB) at 5 or 20 µmol/L resulted in an increase in autophagosome content, defined as puncta labeled by antibody to microtubule associated light chain 3 (LC3). 2-APB also increased autophagic flux, indicated by heightened LC3II accumulation, which was further enhanced by bafilomycin (10nmol/L). Expression of Ins(1,4,5)P(3) 5-phosphatase (IP(3)-5-Pase) to deplete Ins(1,4,5)P(3) also increased LC3-labeled puncta and LC3II content, suggesting that Ins(1,4,5)P(3) inhibits autophagy. The IP(3)-R can act as an inhibitory scaffold sequestering the autophagic effector, beclin-1 to its ligand binding domain (LBD). Expression of GFP-IP(3)-R-LBD inhibited autophagic signaling and furthermore, beclin-1 co-immunoprecipitated with the IP(3)-R-LBD. A mutant GFP-IP(3)-R-LBD with reduced ability to bind Ins(1,4,5)P(3) bound beclin-1 and inhibited autophagy similarly to the wild type sequence. These data provide evidence that Ins(1,4,5)P(3) and IP(3)-R act as inhibitors of autophagic responses in cardiomyocytes. By suppressing autophagy, IP(3)-R may contribute to cardiac pathology.


Assuntos
Autofagia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Sítios de Ligação , Compostos de Boro/farmacologia , Células Cultivadas , Grânulos Citoplasmáticos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ventrículos do Coração/citologia , Proteínas de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fagossomos/metabolismo , Fosfatidiletanolaminas/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Ratos , Ratos Sprague-Dawley , Proteína Sequestossoma-1 , Transdução de Sinais
11.
FASEB J ; 26(2): 596-603, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22012123

RESUMO

Activation of the heterotrimeric G protein, Gq, causes cardiomyocyte hypertrophy in vivo and in cell models. Responses to activated Gq in cardiomyocytes are mediated exclusively by phospholipase Cß1b (PLCß1b), because it localizes at the sarcolemma by binding to Shank3, a high-molecular-weight (MW) scaffolding protein. Shank3 can bind to the Homer family of low-MW scaffolding proteins that fine tune Ca(2+) signaling by facilitating crosstalk between Ca(2+) channels at the cell surface with those on intracellular Ca(2+) stores. Activation of α(1)-adrenergic receptors, expression of constitutively active Gαq (GαqQL), or PLCß1b initiated cardiomyocyte hypertrophy and increased Homer 1c mRNA expression, by 1.6 ± 0.18-, 1.9 ± 0.17-, and 1.5 ± 0.07-fold, respectively (means ± se, 6 independent experiments, P<0.05). Expression of Homer 1c induced an increase in cardiomyocyte area from 853 ± 27 to 1146 ± 31 µm(2) (P<0.05); furthermore, expression of dominant-negative Homer (Homer 1a) reversed the increase in cell size caused by α(1)-adrenergic agonist or PLCß1b treatment (1503±48 to 996±28 and 1626±48 to 828±31 µm(2), respectively, P<0.05). Homer proteins were localized near the sarcolemma, associated with Shank3 and phospholipase Cß1b. We conclude that Gq-mediated hypertrophy involves activation of PLCß1b scaffolded onto a Shank3/Homer complex. Signaling downstream of Homer 1c is necessary and sufficient for Gq-initiated hypertrophy.


Assuntos
Proteínas de Transporte/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Sinalização do Cálcio , Proteínas de Transporte/genética , Crescimento Celular , Técnicas de Silenciamento de Genes , Proteínas de Arcabouço Homer , Técnicas In Vitro , Modelos Cardiovasculares , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso , Fosfolipase C beta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Sarcolema/metabolismo , Transdução de Sinais
12.
FASEB J ; 25(3): 1040-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21148417

RESUMO

Activation of the heterotrimeric G protein Gq causes cardiomyocyte hypertrophy in vivo and in cell models. Our previous studies have shown that responses to activated Gq in cardiomyocytes are mediated exclusively by phospholipase Cß1b (PLCß1b), because only this PLCß subtype localizes at the cardiac sarcolemma. In the current study, we investigated the proteins involved in targeting PLCß1b to the sarcolemma in neonatal rat cardiomyocytes. PLCß1b, but not PLCß1a, coimmunoprecipitated with the high-MW scaffolding protein SH3 and ankyrin repeat protein 3 (Shank3), as well as the known Shank3-interacting protein α-fodrin. The 32-aa splice-variant-specific C-terminal tail of PLCß1b also associated with Shank3 and α-fodrin, indicating that PLCß1b binds via the C-terminal sequence. Shank3 colocalized with PLCß1b at the sarcolemma, and both proteins were enriched in the light membrane fractions. Knockdown of Shank3 using siRNA reduced PLC activation and downstream hypertrophic responses, demonstrating the importance of sarcolemmal localization for PLC signaling. These data indicate that PLCß1b associates with a Shank3 complex at the cardiac sarcolemma via its splice-variant-specific C-terminal tail. Sarcolemmmal localization is central to PLC activation and subsequent downstream signaling following Gq-coupled receptor activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo/fisiologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Fosfolipase C beta/metabolismo , Sarcolema/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Cardiomegalia/metabolismo , Cardiotônicos/farmacologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Microdomínios da Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso , Fenilefrina/farmacologia , Fosfolipase C beta/química , Fosfolipase C beta/genética , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Domínios de Homologia de src/fisiologia
13.
FASEB J ; 23(10): 3564-70, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19564249

RESUMO

Activation of the heterotrimeric G protein Gq causes cardiomyocyte hypertrophy in vivo and in cell culture models. Hypertrophic responses induced by pressure or volume overload are exacerbated by increased Gq activity and ameliorated by Gq inhibition. Gq activates phospholipase Cbeta (PLCbeta) subtypes, resulting in generation of the intracellular messengers inositol(1,4,5)tris-phosphate [Ins(1,4,5)P(3)] and sn-1,2-diacylglycerol (DAG), which regulate intracellular Ca(2+) and conventional protein kinase C subtypes, respectively. Gq can also signal independently of PLCbeta, and the involvement of either Ins(1,4,5)P(3) or DAG in cardiomyocyte hypertrophy has not been unequivocally established. Overexpression of one splice variant of PLCbeta1, specifically PLCbeta1b, in neonatal rat cardiomyocytes causes increased cell size, elevated protein/DNA ratio, and heightened expression of the hypertrophy-related marker gene, atrial natriuretic peptide. The other splice variant, PLCbeta1a, had no effect. Expression of a 32-aa C-terminal PLCbeta1b peptide, which competes with PLCbeta1b for sarcolemmal association, prevented PLC activation and eliminated hypertrophic responses initiated by Gq or Gq-coupled alpha(1)-adrenergic receptors. In contrast, a PLCbeta1a C-terminal peptide altered neither PLC activity nor cellular hypertrophy. We conclude that hypertrophic responses initiated by Gq are mediated specifically by PLCbeta1b. Preventing PLCbeta1b association with the sarcolemma may provide a useful therapeutic target to limit hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/biossíntese , Miócitos Cardíacos/enzimologia , Fosfolipase C beta/biossíntese , Receptores Adrenérgicos alfa 1/biossíntese , Agonistas de Receptores Adrenérgicos alfa 1 , Animais , Cardiomegalia/patologia , Células Cultivadas , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Miócitos Cardíacos/patologia , Fosfolipase C beta/genética , Ratos , Ratos Sprague-Dawley
14.
J Mol Cell Cardiol ; 47(5): 676-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19729020

RESUMO

Atrial fibrillation (AF) is commonly associated with chronic dilatation of the left atrium, both in human disease and animal models. The immediate signaling enzyme phospholipase C (PLC) is activated by mechanical stretch to generate the Ca2+-releasing messenger inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and sn-1,2-diacylglycerol (DAG), an activator of protein kinase C subtypes. There is also evidence that heightened activity of PLC, caused by the receptor coupling protein Gq, can contribute to atrial remodelling. We examined PLC activation in right and left atrial appendage from patients with mitral valve disease (VHD) and in a mouse model of dilated cardiomyopathy caused by transgenic overexpression of the stress-activated protein kinase, mammalian sterile 20 like kinase 1 (Mst1) (Mst1-TG). PLC activation was heightened 6- to 10-fold in atria from VHD patients compared with right atrial tissue from patients undergoing coronary artery bypass surgery (CABG) and was also heightened in the dilated atria from Mst1-TG. PLC activation in human left atrial appendage and in mouse left atria correlated with left atrial size, implying a relationship between PLC activation and chronic dilatation. Dilated atria from human and mouse showed heightened expression of PLCbeta1b, but not of other PLC subtypes. PLCbeta1b, but not PLCbeta1a, caused apoptosis when overexpressed in neonatal rat cardiomyocytes, suggesting that PLCbeta1b may contribute to chamber dilatation. The activation of PLCbeta1b is a possible therapeutic target to limit atrial remodelling in VHD patients.


Assuntos
Cardiomiopatia Dilatada/enzimologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfolipase C beta/fisiologia , Animais , Animais Recém-Nascidos , Apêndice Atrial/metabolismo , Apêndice Atrial/patologia , Fibrilação Atrial/enzimologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Modelos Animais de Doenças , Átrios do Coração , Humanos , Técnicas In Vitro , Camundongos , Insuficiência da Valva Mitral/enzimologia , Insuficiência da Valva Mitral/patologia , Miócitos Cardíacos/metabolismo , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
FASEB J ; 22(8): 2768-74, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18390926

RESUMO

Phospholipase Cbeta1 (PLCbeta1) exists as two splice variants, PLCbeta1a (150 kDa) and PLCbeta1b (140 kDa), which differ only in their C-terminal sequences of 64 and 31 amino acids, respectively. The 3 C-terminal amino acid residues of PLCbeta1a comprise a PDZ-interacting domain, whereas the PLCbeta1b sequence has no PDZ-interacting domain but contains unique proline-rich domain 5 residues from the C terminus. PLCbeta1a is localized in the cytoplasm, whereas PLCbeta1b targets to the sarcolemma and is enriched in caveolae. Deletion of 3 amino acids from the C terminus of PLCbeta1b did not alter its sarcolemmal localization, but deletion of the entire unique 31 amino acid sequence caused cytosolic localization. A myristoylated 10 amino acid peptide from the C terminus of PLCbeta1b selectively dissociated N-terminally GFP-tagged PLCbeta1b from the sarcolemma and inhibited PLC responses to alpha(1)-adrenergic agonists, with a half maximal effective concentration of 12 +/- 1.6 microM (mean+/-SE, n=3). A similar peptide from PLCbeta1a was without effect at concentrations below 100 microM. Thus, the extreme C-terminal sequences of the PLCbeta1 splice variants determine localization and, thus, function. In cardiomyocytes, responses initiated by alpha(1)-adrenergic receptor activation involve only PLCbeta1b, and the selective targeting of this splice variant to the sarcolemma provides a potential therapeutic target to reduce hypertrophy, apoptosis, and arrhythmias.


Assuntos
Miócitos Cardíacos/metabolismo , Fosfolipase C beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , Fosfolipase C beta/química , Fosfolipase C beta/genética , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcolema/enzimologia , Deleção de Sequência , Frações Subcelulares/enzimologia
16.
J Cell Biol ; 164(7): 1021-32, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15037603

RESUMO

In healthy cells, Bax resides inactive in the cytosol because its COOH-terminal transmembrane region (TMB) is tucked into a hydrophobic pocket. During apoptosis, Bax undergoes a conformational change involving NH2-terminal exposure and translocates to mitochondria to release apoptogenic factors. How this process is regulated remains unknown. We show that the TMB of Bax is both necessary and sufficient for mitochondrial targeting. However, its availability for targeting depends on Pro168 located within the preceding loop region. Pro168 mutants of Bax lack apoptotic activity, cannot rescue the apoptosis-resistant phenotype of Bax/Bak double knockout cells, and are retained in the cytosol even in response to apoptotic stimuli. Moreover, the mutants have their NH2 termini exposed. We propose that Pro168 links the NH2 and the COOH terminus of Bax and is required for COOH-terminal release and mitochondrial targeting once this link is broken.


Assuntos
Sobrevivência Celular/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Prolina , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Transporte Proteico , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2
17.
Anesthesiol Res Pract ; 2019: 2897406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191651

RESUMO

PURPOSE: To test the hypothesis that a low-dose rocuronium acts mainly by means of reducing muscular endurance rather than by reducing momentary force. METHODS: In a randomized placebo-controlled double-blinded study, eight healthy volunteers were studied in two sets of experiments. In the first set, the subjects made a sustained maximum effort with the dominant hand for 80 seconds while squeezing an electronic handgrip dynamometer at three minutes after intravenous administration of placebo, 0.04 or 0.08 mg/kg rocuronium. Handgrip force at initiation of testing (maximum handgrip force) and after 60 seconds was evaluated. In the second set, the ulnar nerve of the subjects was electrically stimulated every tenth second for at least 10 and a maximum of 30 minutes following the administration of placebo and 0.08 mg/kg rocuronium. Single twitch height of the adductor pollicis muscle was recorded. RESULTS: There was no significant difference in the effect on maximum handgrip force at time 0 between the three different doses of rocuronium. As compared with placebo, handgrip force after 0.08 mg/kg rocuronium was reduced to approximately a third at 60 seconds (214 N (120-278) vs. 69 (30-166); p=0.008), whereas only a slight reduction was seen after 0.04 mg/kg (187 (124-256); p=0.016). Based on these results, the sustained handgrip force after 0.2 mg/kg at 60 seconds was calculated to be 1.27% (95% CI [0.40, 4.03]) of the maximum force of placebo. No effect on single twitch height after 0.08 mg/kg rocuronium at four minutes after drug administration could be detected. CONCLUSIONS: Subparalyzing doses of rocuronium show a distinct effect on muscular endurance as opposed to momentary force. The findings support the hypothesis that low doses of rocuronium act mainly by reducing muscular endurance, thereby facilitating, for example, tracheal intubation.

18.
J Mol Cell Cardiol ; 45(5): 679-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18692062

RESUMO

The functional significance of the Ca2+-releasing second messenger inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3), IP(3)) in the heart has been controversial. Ins(1,4,5)P(3) is generated from the precursor lipid phosphatidylinositol(4,5)bisphosphate (PIP(2)) along with sn-1,2-diacylglycerol, and both of these are important cardiac effectors. Therefore, to evaluate the functional importance of Ins(1,4,5)P(3) in cardiomyocytes (NRVM), we overexpressed IP(3) 5-phosphatase to increase degradation. Overexpression of IP(3) 5-phosphatase reduced Ins(1,4,5)P(3) responses to alpha(1)-adrenergic receptor agonists acutely, but with longer stimulation, caused an overall increase in phospholipase C (PLC) activity, associated with a selective increase in expression of PLCbeta1, that served to normalise Ins(1,4,5)P(3) content. Similar increases in PLC activity and PLCbeta1 expression were observed when Ins(1,4,5)P(3) was sequestered onto the PH domain of PLCdelta1, a high affinity selective Ins(1,4,5)P(3)-binding motif. These findings suggested that the available level of Ins(1,4,5)P(3) selectively regulates the expression of PLCbeta1. Cardiac responses to Ins(1,4,5)P(3) are mediated by type 2 IP(3)-receptors. Hearts from IP(3)-receptor (type 2) knock-out mice showed heightened PLCbeta1 expression. We conclude that Ins(1,4,5)P(3) and IP(3)-receptor (type 2) regulate PLCbeta1 and thereby maintain levels of Ins(1,4,5)P(3). This implies some functional significance for Ins(1,4,5)P(3) in the heart.


Assuntos
Regulação Enzimológica da Expressão Gênica , Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/enzimologia , Fosfolipase C beta/biossíntese , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Ventrículos do Coração/citologia , Humanos , Inositol 1,4,5-Trifosfato/biossíntese , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Fosfolipase C beta/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Eur J Echocardiogr ; 9(1): 92-4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17412642

RESUMO

BACKGROUND: Left ventricular free wall rupture is an uncommon but catastrophic event following myocardial infarction, and considered the second leading cause of death in acute myocardial infarct. Different types of rupture exist from acute to sub acute types, but prognosis is usually poor. Early recognition and aggressive treatment is recommended. CASE REPORT: We present a case of a 75-year-old man who was referred to our echo-lab for an out patient evaluation because of 1-week duration of worsening of chest pain. Standard transthoracic echocardiography showed hypokinesia in the apical portion of the anterior wall and basal portion of the inferior wall. The patient complained of shortness of breath immediately after the conclusion of the exam, and soon afterward became unconscious. Renewed echocardiography approximately 1 min after syncope displayed a newly developed echo-lucent rim around the heart consistent with left ventricular free wall rupture. Resuscitation was performed followed by attempts to evacuate the blood by needle aspiration, which failed. Open pericardiocentesis stabilised the patient until surgery could be performed. The patient survived and could be discharged 2 weeks later. CONCLUSION: This case highlights the fact that rapid and accurate diagnosis is essential if patients with left ventricular free wall rupture are to survive.


Assuntos
Ecocardiografia , Ruptura Cardíaca Pós-Infarto/diagnóstico por imagem , Idoso , Ruptura Cardíaca Pós-Infarto/cirurgia , Humanos , Masculino , Resultado do Tratamento
20.
PLoS One ; 11(6): e0158317, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27359099

RESUMO

Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCß1b. Previous studies from our group showed that increasing PLCß1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCß1b and PLCß1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCß1b hearts without evidence of induced hypertrophy. Expression of PLCß1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCß1a caused similar mild expression changes to PLCß1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCß1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function.


Assuntos
Perfilação da Expressão Gênica/métodos , Coração/fisiopatologia , Fosfolipase C beta/genética , Análise de Sequência de RNA/métodos , Animais , Dependovirus/genética , Regulação da Expressão Gênica , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Fosfolipase C beta/metabolismo , Sítios de Splice de RNA , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA