Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 26(4): 4710-4722, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475318

RESUMO

We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10-5 at code rates of up to 0.1. The PUFs' responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

2.
Opt Express ; 25(11): 12710-12721, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786625

RESUMO

Physical unclonable functions (PUFs) serve as a hardware source of private information that cannot be duplicated and have applications in hardware integrity and information security. Here we demonstrate a photonic PUF based on ultrafast nonlinear optical interactions in a chaotic silicon micro-cavity. The device is probed with a spectrally-encoded ultrashort optical pulse, which nonlinearly interacts with the micro-cavity. This interaction produces a highly complex and unpredictable, yet deterministic, ultrafast response that can serve as a unique "fingerprint" of the cavity and as a source of private information for the device's holder. Experimentally, we extract 17.1-kbit binary keys from six different photonic PUF designs and demonstrate the uniqueness and reproducibility of these keys. Furthermore, we experimentally test exact copies of the six photonic PUFs and demonstrate their unclonability due to unavoidable fabrication variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA