Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 16(5): e2005754, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29799847

RESUMO

Phagocytes locate microorganisms via chemotaxis and then consume them using phagocytosis. Dictyostelium amoebas are stereotypical phagocytes that prey on diverse bacteria using both processes. However, as typical phagocytic receptors, such as complement receptors or Fcγ receptors, have not been found in Dictyostelium, it remains mysterious how these cells recognize bacteria. Here, we show that a single G-protein-coupled receptor (GPCR), folic acid receptor 1 (fAR1), simultaneously recognizes the chemoattractant folate and the phagocytic cue lipopolysaccharide (LPS), a major component of bacterial surfaces. Cells lacking fAR1 or its cognate G-proteins are defective in chemotaxis toward folate and phagocytosis of Klebsiella aerogenes. Computational simulations combined with experiments show that responses associated with chemotaxis can also promote engulfment of particles coated with chemoattractants. Finally, the extracellular Venus-Flytrap (VFT) domain of fAR1 acts as the binding site for both folate and LPS. Thus, fAR1 represents a new member of the pattern recognition receptors (PRRs) and mediates signaling from both bacterial surfaces and diffusible chemoattractants to reorganize actin for chemotaxis and phagocytosis.


Assuntos
Quimiotaxia , Dictyostelium/metabolismo , Receptor 1 de Folato/metabolismo , Fagocitose , Actinas/metabolismo , Fatores Quimiotáticos/metabolismo , Enterobacter aerogenes , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Lipopolissacarídeos/metabolismo , Domínios Proteicos
2.
Anal Chem ; 89(13): 7190-7194, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28590115

RESUMO

Parahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from 1H to 13C for longer lifetimes by using zero field cycling. In this work, water-dispersible N-acetylcysteine- and l-cysteine-stabilized palladium nanoparticles are introduced, and carbon polarizations up to 2 orders of magnitude higher than in previous aqueous heterogeneous PHIP systems are presented. P13C values of 1.2 and 0.2% are achieved for the formation of hydroxyethyl propionate from hydroxyethyl acrylate and ethyl acetate from vinyl acetate, respectively. Both nanoparticle systems are easily synthesized in open air, and TEM indicates an average size of 2.4 ± 0.6 nm for NAC@Pd and 2.5 ± 0.8 nm for LCys@Pd nanoparticles with 40 and 25% ligand coverage determined by thermogravimetric analysis, respectively. As a step toward biological relevance, results are presented for the unprotected amino acid allylglycine upon aqueous hydrogenation of propargylglycine.

3.
Angew Chem Int Ed Engl ; 54(8): 2452-6, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25565403

RESUMO

Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water.


Assuntos
Hidrogênio/química , Nanopartículas/química , Água/química , Catálise , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA