Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 40(7): e106797, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33644892

RESUMO

Partitioning of the genome in meiosis occurs through two highly specialized cell divisions, named meiosis I and meiosis II. Step-wise cohesin removal is required for chromosome segregation in meiosis I, and sister chromatid segregation in meiosis II. In meiosis I, mono-oriented sister kinetochores appear as fused together when examined by high-resolution confocal microscopy, whereas they are clearly separated in meiosis II, when attachments are bipolar. It has been proposed that bipolar tension applied by the spindle is responsible for the physical separation of sister kinetochores, removal of cohesin protection, and chromatid separation in meiosis II. We show here that this is not the case, and initial separation of sister kinetochores occurs already in anaphase I independently of bipolar spindle forces applied on sister kinetochores, in mouse oocytes. This kinetochore individualization depends on separase cleavage activity. Crucially, without kinetochore individualization in meiosis I, bivalents when present in meiosis II oocytes separate into chromosomes and not sister chromatids. This shows that whether centromeric cohesin is removed or not is determined by the kinetochore structure prior to meiosis II.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Meiose , Animais , Células Cultivadas , Cromátides/genética , Cromátides/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Coesinas
2.
Curr Biol ; 32(10): 2281-2290.e4, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35385691

RESUMO

To generate haploid gametes, cohesin is removed in a stepwise manner from chromosome arms in meiosis I and the centromere region in meiosis II to segregate chromosomes and sister chromatids, respectively. Meiotic cohesin removal requires cleavage of the meiosis-specific kleisin subunit Rec8 by the protease separase.1,2 In yeast and C. elegans, Rec8 on chromosome arms has to be phosphorylated to be cleaved in meiosis I,3-7 whereas Rec8 at the centromere is protected from cleavage by the action of PP2A-B56.8-10 However, in mammalian meiosis, it is unknown whether Rec8 has to be equally phosphorylated for cleavage, and if so, the identity of the relevant kinase(s). This is due to technical challenges, as Rec8 is poorly conserved, preventing a direct translation of the knowledge gained from model systems such as yeast and C. elegans to mammals. Additionally, there is no turnover of Rec8 after cohesion establishment, preventing phosphomutant analysis of functional Rec8. To address the very basic question of whether Rec8 cleavage requires its phosphorylation in mammals, we adapted a biosensor that detects separase activity to study Rec8 cleavage in single mouse oocytes by live imaging. Crucially, through phosphomutant analysis, we identified phosphorylation sites in Rec8 promoting cleavage. We found that Rec8 cleavage depends on Aurora B/C kinase activities and identified an aminoacid residue that is phosphorylated in vivo. Accordingly, inhibition of Aurora B/C kinases during meiotic maturation impairs endogenous Rec8 phosphorylation and chromosome segregation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Mamíferos/genética , Meiose , Camundongos , Oócitos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Separase/metabolismo
3.
Nat Commun ; 8(1): 694, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947820

RESUMO

A key feature of meiosis is the step-wise removal of cohesin, the protein complex holding sister chromatids together, first from arms in meiosis I and then from the centromere region in meiosis II. Centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage, in order to maintain sister chromatids together until their separation in meiosis II. Failures in step-wise cohesin removal result in aneuploid gametes, preventing the generation of healthy embryos. Here, we report that kinase activities of Bub1 and Mps1 are required for Sgo2 localisation to the centromere region. Mps1 inhibitor-treated oocytes are defective in centromeric cohesin protection, whereas oocytes devoid of Bub1 kinase activity, which cannot phosphorylate H2A at T121, are not perturbed in cohesin protection as long as Mps1 is functional. Mps1 and Bub1 kinase activities localise Sgo2 in meiosis I preferentially to the centromere and pericentromere respectively, indicating that Sgo2 at the centromere is required for protection.In meiosis I centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage ensuring that sister chromatids are kept together until their separation in meiosis II. Here the authors demonstrate that Bub1 and Mps1 kinase activities are required for Sgo2 localisation to the centromere region.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Meiose/fisiologia , Oócitos/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Proteínas de Ciclo Celular/análise , Centrômero/ultraestrutura , Camundongos , Oócitos/metabolismo , Oócitos/ultraestrutura , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA