Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Genet Genomics ; 293(6): 1379-1392, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29967963

RESUMO

Because of its known phytochemical activity and benefits for human health, American cranberry (Vaccinium macrocarpon L.) production and commercialization around the world has gained importance in recent years. Flavonoid compounds as well as the balance of sugars and acids are key quality characteristics of fresh and processed cranberry products. In this study, we identified novel QTL that influence total anthocyanin content (TAcy), titratable acidity (TA), proanthocyanidin content (PAC), Brix, and mean fruit weight (MFW) in cranberry fruits. Using repeated measurements over the fruit ripening period, different QTLs were identified at specific time points that coincide with known chemical changes during fruit development and maturation. Some genetic regions appear to be regulating more than one trait. In addition, we demonstrate the utility of digital imaging as a reliable, inexpensive and high-throughput strategy for the quantification of anthocyanin content in cranberry fruits. Using this imaging approach, we identified a set of QTLs across three different breeding populations which collocated with anthocyanin QTL identified using wet-lab approaches. We demonstrate the use of a high-throughput, reliable and highly accessible imaging strategy for predicting anthocyanin content based on cranberry fruit color, which could have a large impact for both industry and cranberry research.


Assuntos
Antocianinas/metabolismo , Frutas/metabolismo , Locos de Características Quantitativas , Vaccinium macrocarpon/química , Vaccinium macrocarpon/genética , Antocianinas/química , Mapeamento Cromossômico , Flavonoides/química , Flavonoides/genética , Flavonoides/metabolismo , Frutas/anatomia & histologia , Frutas/química , Frutas/genética , Estudos de Associação Genética , Ensaios de Triagem em Larga Escala , Fenótipo , Vaccinium macrocarpon/anatomia & histologia , Vaccinium macrocarpon/metabolismo
2.
BMC Genomics ; 17: 451, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27295982

RESUMO

BACKGROUND: The application of genotyping by sequencing (GBS) approaches, combined with data imputation methodologies, is narrowing the genetic knowledge gap between major and understudied, minor crops. GBS is an excellent tool to characterize the genomic structure of recently domesticated (~200 years) and understudied species, such as cranberry (Vaccinium macrocarpon Ait.), by generating large numbers of markers for genomic studies such as genetic mapping. RESULTS: We identified 10842 potentially mappable single nucleotide polymorphisms (SNPs) in a cranberry pseudo-testcross population wherein 5477 SNPs and 211 short sequence repeats (SSRs) were used to construct a high density linkage map in cranberry of which a total of 4849 markers were mapped. Recombination frequency, linkage disequilibrium (LD), and segregation distortion at the genomic level in the parental and integrated linkage maps were characterized for first time in cranberry. SSR markers, used as the backbone in the map, revealed high collinearity with previously published linkage maps. The 4849 point map consisted of twelve linkage groups spanning 1112 cM, which anchored 2381 nuclear scaffolds accounting for ~13 Mb of the estimated 470 Mb cranberry genome. Bin mapping identified 592 and 672 unique bins in the parentals and a total of 1676 unique marker positions in the integrated map. Synteny analyses comparing the order of anchored cranberry scaffolds to their homologous positions in kiwifruit, grape, and coffee genomes provided initial evidence of homology between cranberry and closely related species. CONCLUSIONS: GBS data was used to rapidly saturate the cranberry genome with markers in a pseudo-testcross population. Collinearity between the present saturated genetic map and previous cranberry SSR maps suggests that the SNP locations represent accurate marker order and chromosome structure of the cranberry genome. SNPs greatly improved current marker genome coverage, which allowed for genome-wide structure investigations such as segregation distortion, recombination, linkage disequilibrium, and synteny analyses. In the future, GBS can be used to accelerate cranberry molecular breeding through QTL mapping and genome-wide association studies (GWAS).


Assuntos
Mapeamento Cromossômico , Ligação Genética , Genoma de Planta , Genômica , Genótipo , Vaccinium macrocarpon/genética , Análise por Conglomerados , Genômica/métodos , Desequilíbrio de Ligação , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Sintenia
3.
J Texture Stud ; 55(5): e12866, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39261281

RESUMO

Fruit texture is a priority trait that guarantees the long-term economic sustainability of the cranberry industry through value-added products such as sweetened dried cranberries (SDCs). To develop a standard methodology to measure texture, we conducted a comparative analysis of 22 textural traits using five different methods under both harvest and postharvest conditions in 10 representative cranberry cultivars. A set of textural traits from the 10%-strain compression and puncture methods were identified that differentiate between cultivars primarily based on hardness/stiffness and elasticity properties. The complementary use of both methodologies allowed for a detailed evaluation by capturing the effect of key texture-determining factors such as structure, flesh, and skin. Furthermore, the high effectiveness of this approach in different conditions and its ability to capture high phenotypic variation in cultivars highlights its great potential for applicability in various areas of the value chain and research. Therefore, this study provides an informed reference for unifying future efforts to enhance cranberry fruit texture and quality.


Assuntos
Frutas , Vaccinium macrocarpon , Dureza , Elasticidade
4.
PLoS One ; 14(9): e0222451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31553750

RESUMO

BACKGROUND: Cranberry (Vaccinium macrocarpon L.) fruit quality traits encompass many properties. Although visual appearance and fruit nutritional constitution have usually been the most important attributes, cranberry textural properties such as firmness have recently gained importance in the industry. Fruit firmness has become a quality standard due to the recent demand increase for sweetened and dried cranberries (SDC), which are currently the most profitable cranberry product. Traditionally, this trait has been measured by the cranberry industry using compression tests; however, it is poorly understood how fruit firmness is influenced by other characteristics. RESULTS: In this study, we developed a high-throughput computer-vision method to measure the internal structure of cranberry fruit, which may in turn influence cranberry fruit firmness. We measured the internal structure of 16 cranberry cultivars measured over a 40-day period, representing more than 3000 individual fruit evaluated for 10 different traits. The internal structure data paired with fruit firmness values at each evaluation period allowed us to explore the correlations between firmness and internal morphological characteristics. CONCLUSIONS: Our study highlights the potential use of internal structure and firmness data as a decision-making tool for cranberry processing, especially to determine optimal harvest times and ensure high quality fruit. In particular, this study introduces novel methods to define key parameters of cranberry fruit that have not been characterized in cranberry yet. This project will aid in the future evaluation of cranberry cultivars for in SDC production.


Assuntos
Frutas/anatomia & histologia , Vaccinium macrocarpon/anatomia & histologia , Produção Agrícola , Fenótipo , Melhoramento Vegetal
5.
PeerJ ; 6: e5461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128209

RESUMO

Image-based phenotyping methodologies are powerful tools to determine quality parameters for fruit breeders and processors. The fruit size and shape of American cranberry (Vaccinium macrocarpon L.) are particularly important characteristics that determine the harvests' processing value and potential end-use products (e.g., juice vs. sweetened dried cranberries). However, cranberry fruit size and shape attributes can be difficult and time consuming for breeders and processors to measure, especially when relying on manual measurements and visual ratings. Therefore, in this study, we implemented image-based phenotyping techniques for gathering data regarding basic cranberry fruit parameters such as length, width, length-to-width ratio, and eccentricity. Additionally, we applied a persistent homology algorithm to better characterize complex shape parameters. Using this high-throughput artificial vision approach, we characterized fruit from 351 progeny from a full-sib cranberry population over three field seasons. Using a covariate analysis to maximize the identification of well-supported quantitative trait loci (QTL), we found 252 single QTL in a 3-year period for cranberry fruit size and shape descriptors from which 20% were consistently found in all years. The present study highlights the potential for the identified QTL and the image-based methods to serve as a basis for future explorations of the genetic architecture of fruit size and shape in cranberry and other fruit crops.

6.
Front Plant Sci ; 9: 1310, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258453

RESUMO

The development of high-throughput genotyping has made genome-wide association (GWAS) and genomic selection (GS) applications possible for both model and non-model species. The exploitation of genome-assisted approaches could greatly benefit breeding efforts in American cranberry (Vaccinium macrocarpon) and other minor crops. Using biparental populations with different degrees of relatedness, we evaluated multiple GS methods for total yield (TY) and mean fruit weight (MFW). Specifically, we compared predictive ability (PA) differences between univariate and multivariate genomic best linear unbiased predictors (GBLUP and MGBLUP, respectively). We found that MGBLUP provided higher predictive ability (PA) than GBLUP, in scenarios with medium genetic correlation (8-17% increase with corg~0.6) and high genetic correlations (25-156% with corg~0.9), but found no increase when genetic correlation was low. In addition, we found that only a few hundred single nucleotide polymorphism (SNP) markers are needed to reach a plateau in PA for both traits in the biparental populations studied (in full linkage disequilibrium). We observed that higher resemblance among individuals in the training (TP) and validation (VP) populations provided greater PA. Although multivariate GS methods are available, genetic correlations and other factors need to be carefully considered when applying these methods for genetic improvement.

7.
G3 (Bethesda) ; 7(4): 1177-1189, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250016

RESUMO

The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.


Assuntos
Mapeamento Cromossômico/métodos , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA , Vaccinium macrocarpon/genética , Centrômero/genética , Segregação de Cromossomos/genética , Genoma de Planta , Genótipo , Repetições de Microssatélites/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA