Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 181: 312-320, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202931

RESUMO

The effect of manure compost alone and combined with Streptomyces pactum (Act12) applied in the smelter-contaminated soil was investigated. The soil fertility, enzymatic activities, potentially toxic metals (PTMs) solubility, and phytoremediation efficiency of potherb mustard (Brassica juncea, Coss.) were assessed. Results showed that the application of compost reduced the soil pH, while significantly increased the soil electrical conductivity (EC) (7.0 folds), available phosphorus (AP) (10.8 folds), available potassium (AK) (2.81 folds), dissolved organic carbon (DOC) (5.22 folds), organic matter (OM) (4.93 folds), together with soil enzymatic activities viz. urease (UR) (4.39 folds), dehydrogenase (DEH) (45.0 folds) and alkaline phosphatase (ALP) (123.9 folds) in comparison with control. The inoculation of Act12 increased AP, AK, DOC, OM and UR values, but reduced EC, DEH and ALP values compared to corresponding lone compost amendment. Additionally, Act12 solubilized PTMs (Cd and Zn) in the soil, and accordingly enhanced the PTMs uptake in the plant. The phytoextraction indices viz. biological concentration factor (BCF), translocation factor (TF) and metal extraction amount (MEA) indicated that compost and Act12 had a synergistic role in enhancing the phytoremediation efficiency, among which MEA values of Cd and Zn maximally increased by 9.64 and 11.4 folds, respectively, compared to control. Redundancy analysis (RDA) indicated that phytoextraction indices correlated well with soil parameters. Our results suggested that manure compost associated with Act12 is a potential strengthening strategy in phytoremediation of PTMs contaminated soil.


Assuntos
Compostagem , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Streptomyces/fisiologia , Fosfatase Alcalina/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Esterco , Metais Pesados/toxicidade , Mostardeira/metabolismo , Oxirredutases/metabolismo , Solo/química , Poluentes do Solo/toxicidade , Urease/metabolismo , Zinco/metabolismo
2.
Ecotoxicol Environ Saf ; 181: 155-163, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31181386

RESUMO

In this study, comparative investigations on the effects of crop straw and its derived biochars on soil Cd and Zn mobility and availability were conducted. Crop straws (i.e. maize straw, rapeseed straw, and wheat straw) and their derived biochars were incubated with two contaminated alkaline soils (FX and TG soils) at 2.5% (w/w). The changes of soil properties like pH, EC, organic matter content, and dissolved organic matter content were investigated along with metal mobility, speciation distribution, and accumulation in ryegrass (Lolium multiflorum Lam.). Results indicated biochar, especially those were high in pH, enhanced soil pH (>0.2 units, p < 0.05), whereas a continuous reduction of soil pH was observed among treatments with crop straws. Both soil EC and the organic matter content increased with the application of both crop straws and biochars. In term of metals, Cd and Zn mobility were reduced with 6-14%/1-5% and 6-27%/7-15% reduction in the DTPA extractable Cd and Zn contents in TG and FX soil treatments, respectively. Moreover, distinct changes of metals in different fractions were also observed (acid soluble and reducible fraction → oxidizable fraction in straw treatments; acid soluble fraction → reducible soluble fraction in biochar amendments). Furthermore, the biological analysis revealed that the growth of ryegrass was promoted, but the accumulation of metals in ryegrass shoots was reduced, especially in MS700 treatment. Apart from the amendments, metal immobilization efficiencies were negatively correlated with the contamination status. Despite that, a higher rate of biochar application (>10%) could dramatically reduce the amount of available metal in soil extracts, except for Zn in FX soil treatments. This present work demonstrated that biochars, especially those produced at a higher temperature, are superior to crop straws to immobilize metals in soils. However, the remediation efficiencies were strongly restricted by soil pH and contamination status.


Assuntos
Cádmio/análise , Carvão Vegetal , Poluentes do Solo/análise , Zinco/análise , Produtos Agrícolas , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Metalurgia , Solo/química
3.
Environ Sci Pollut Res Int ; 27(35): 43514-43525, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594441

RESUMO

Microbe-assisted phytoremediation provides an eco-friendly and cost-effective approach to reclaim Cd- and Pb-contaminated soils. In this work, incubation and pot experiments were established to investigate the effect of Streptomyces pactum (Act12) combined with compost on soil physicochemical properties, enzymatic activities, and thereby acted on phytoextraction of Cd and Pb by using potherb mustard (Brassica juncea Coss.). The addition of Act12 and compost increased EC (7.2%), available phosphorus (P) (14.9%), available potassium (K) (17.0 folds), DOC (37.7%), OM (2.8 folds), urease (49.8%), dehydrogenase (2.2 folds), and alkaline phosphatase (23.0 folds) of soil, while reduced pH (7.7%) compared with control. Significant decrease of available Cd and Pb uptake was observed after adding compost and Act12 by 29.1% and 32.2%. Presence of compost and Act12 enhanced the biomass by 3.98 folds and 1.83 folds in shoots and roots of plant. Results showed the assimilation of Cd and Pb in shoots was increased by 103.8% and 48.7% due to the increased of biomass. Meanwhile, the rhizosphere effect of soil microorganisms increased the uptake of Cd (60.4%) and Pb (19.2%) in roots. These findings suggested that Act12 joined with compost-strengthened potherb mustard phytoremediation of Cd- and Pb-polluted soils, which may provide new insights into the clean-up of mining-contaminated soils in field practice.


Assuntos
Poluentes do Solo , Streptomyces , Biodegradação Ambiental , Disponibilidade Biológica , Cádmio/análise , Chumbo , Solo , Poluentes do Solo/análise
4.
Bioresour Technol ; 293: 122027, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31454735

RESUMO

Thermal conversion is a promising approach for the disposal of phytoremediation biowastes. The thermal characteristics of potherb mustard biowaste contaminated by potentially toxic metals were studied in this work. Thermogravimetric (TG) and derivative thermogravimetric (DTG) analyses of four feedstocks with different Cd/Zn content were conducted in an inert environment. Evolved gases were identified online by mass spectrometry (MS) coupled with TG. The TG-DTG profiles of the four feedstocks presented similar decomposition stages, whereas the samples with low Cd/Zn had a faster degradation rate, suggesting that the presence of Cd/Zn had little effect on thermal decomposition mechanism. The maximum evolution of H2 and CH4 occurred at 500-650 °C, while CO was released at a low temperature. PTMs could catalyze the H2 production during the pyrolysis of biowaste. This investigation revealed the effects of different Cd/Zn contents on thermal conversion, providing a practical reference for the thermal treatment of phytoremediation biowastes.


Assuntos
Gases , Mostardeira , Biodegradação Ambiental , Espectrometria de Massas , Metais , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA