Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38331582

RESUMO

Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Animais , Masculino , Camundongos , Metanfetamina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Reforço Psicológico , Cerebelo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia
2.
J Neurosci ; 44(5)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38148153

RESUMO

Adolescent cocaine exposure (ACE) induces anxiety and higher sensitivity to substances abuse during adulthood. Here, we show that the claustrum is crucial for controlling these psychiatric problems in male mice. In anxiety-like behavioral tests, the CaMKII-positive neurons in the median portion of the claustrum (MClaustrum) were triggered, and local suppression of these neurons reduced the anxiety-like behavior in ACE mice during adulthood. In contrast, the CaMKII-positive neurons in the anterior portion of the claustrum (AClaustrum) were more activated in response to subthreshold dose of cocaine induced conditioned place preference (CPP), and local suppression of these neurons blocked the acquisition of cocaine CPP in ACE mice during adulthood. Our findings for the first time identified the fine-regional role of the claustrum in regulating the anxiety and susceptibility to cocaine in ACE mice during adulthood, extending our understanding of the claustrum in substance use disorder.


Assuntos
Claustrum , Cocaína , Masculino , Animais , Camundongos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Recompensa , Cocaína/farmacologia , Ansiedade
3.
EMBO Rep ; 24(9): e56981, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37535645

RESUMO

Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Camundongos , Masculino , Animais , Cocaína/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Pré-Frontal , Neurônios/metabolismo
4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38981852

RESUMO

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Assuntos
Astrócitos , Transtornos da Memória , Metanfetamina , Microglia , Minociclina , Memória Espacial , Animais , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Transtornos da Memória/induzido quimicamente , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Memória Espacial/fisiologia , Memória Espacial/efeitos dos fármacos , Masculino , Minociclina/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Estimulantes do Sistema Nervoso Central/toxicidade
5.
J Neurosci ; 43(5): 803-811, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564185

RESUMO

Anxiety is one of the most common withdrawal symptoms of methamphetamine (METH) abuse, which further drives relapse to drugs. Interpeduncular nucleus (IPN) has been implicated in anxiety-like behaviors and addiction, yet its role in METH-abstinence-induced anxiety remains unknown. Here, we found that prolonged abstinence from METH enhanced anxiety-like behaviors in male mice, accompanied by more excited IPN GABAergic neurons, as indicated by the increased c-fos expression and the enhanced neuronal excitability by electrophysiological recording in the GABAergic neurons. Using the designer receptors exclusively activated by designer drugs method, specific inhibition of IPN GABAergic neurons rescued the aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduced anxiety-like behaviors, whereas it did not induce depression-like behaviors in male mice after prolonged abstinence from METH. These findings reveal that IPN GABAergic neurons should be a promising brain target to alleviate late withdrawal symptoms from METH with few side effects.SIGNIFICANCE STATEMENT Prolonged abstinence from METH triggers IPN GABAergic neurons and ultimately increases anxiety in male mice. Suppressing IPN GABAergic neurons rescues METH abstinence-induced aberrant neuronal excitation of IPN GABAergic neurons and efficiently reduces anxiety in mice.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Núcleo Interpeduncular , Metanfetamina , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Animais , Metanfetamina/farmacologia , Núcleo Interpeduncular/metabolismo , Ansiedade/metabolismo , Neurônios GABAérgicos/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo
6.
Cell Mol Biol Lett ; 29(1): 37, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486171

RESUMO

BACKGROUND: DNA mismatch repair (MMR) is a highly conserved pathway that corrects DNA replication errors, the loss of which is attributed to the development of various types of cancers. Although well characterized, MMR factors remain to be identified. As a 3'-5' exonuclease and endonuclease, meiotic recombination 11 homolog A (MRE11A) is implicated in multiple DNA repair pathways. However, the role of MRE11A in MMR is unclear. METHODS: Initially, short-term and long-term survival assays were used to measure the cells' sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Meanwhile, the level of apoptosis was also determined by flow cytometry after MNNG treatment. Western blotting and immunofluorescence assays were used to evaluate the DNA damage within one cell cycle after MNNG treatment. Next, a GFP-heteroduplex repair assay and microsatellite stability test were used to measure the MMR activities in cells. To investigate the mechanisms, western blotting, the GFP-heteroduplex repair assay, and chromatin immunoprecipitation were used. RESULTS: We show that knockdown of MRE11A increased the sensitivity of HeLa cells to MNNG treatment, as well as the MNNG-induced DNA damage and apoptosis, implying a potential role of MRE11 in MMR. Moreover, we found that MRE11A was largely recruited to chromatin and negatively regulated the DNA damage signals within the first cell cycle after MNNG treatment. We also showed that knockdown of MRE11A increased, while overexpressing MRE11A decreased, MMR activity in HeLa cells, suggesting that MRE11A negatively regulates MMR activity. Furthermore, we show that recruitment of MRE11A to chromatin requires MLH1 and that MRE11A competes with PMS2 for binding to MLH1. This decreases PMS2 levels in whole cells and on chromatin, and consequently comprises MMR activity. CONCLUSIONS: Our findings reveal that MRE11A is a negative regulator of human MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Metilnitronitrosoguanidina , Humanos , Cromatina , Células HeLa , Metilnitronitrosoguanidina/farmacologia , Endonuclease PMS2 de Reparo de Erro de Pareamento
7.
Addict Biol ; 28(1): e13255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577725

RESUMO

Methamphetamine (METH) is a commonly abused addictive psychostimulant, and METH-induced neurotoxic and behavioural deficits are in a sex-specific manner. However, there is lack of biomarkers to evaluate METH addiction in clinical practice, especially for gender differences. We utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to detect the serum metabolomics in METH addicts and controls, specially exploring the sex-specific metabolic alterations by METH abuse. We found that many differently expressed metabolites in METH addicts related to metabolisms of amino acid, energy, vitamin and neurological disorders. Further, METH abuse caused different patterns of metabolomics in a sex-specific manner. As to amino acid metabolism, L-phenylalanine, L-tryptophan and L-histidine in serum of male addicts and betaine in serum of female addicts were significantly changed by METH use. In addition, it seemed that purine and pyrimidine-related metabolites (e.g., xanthosine and adenosine 5'-monophosphate) in male and the metabolites of hormone (e.g., cortisol) and folate biosynthesis (e.g., 7,8-dihydrobiopterin and 4-hydroxybenzoic acid) in female were more sensitive to METH addiction. Our findings revealed that L-glutamic acid, L-aspartic acid, alpha-ketoglutarate acid and citric acid may be potential biomarkers for monitoring METH addiction in clinic. Considering sex-specific toxicity by METH, the metabolites of purine and pyrimidine metabolism in male and those of stress-related hormones in female may be used to facilitate the accurate diagnosis and treatment for METH addicts of different genders.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Feminino , Masculino , Humanos , Metanfetamina/farmacologia , Espectrometria de Massas em Tandem , Biomarcadores/metabolismo , Purinas , Aminoácidos , Pirimidinas
8.
Addict Biol ; 28(9): e13314, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644891

RESUMO

Methamphetamine (Meth) withdrawal elicits anxiety, which is a public health concern with limited therapeutic options. Previous studies implied a strong correlation between mPFC and Meth withdrawal. Here, we examined the role of Gegen-Qinlian decoction (GQD) in Meth withdrawal anxiety and explored potential therapeutic targets in mPFC. We found that intra-gastric administration of GQD during the withdrawal period efficiently alleviated anxiety-like behaviours in Meth-withdrawn mice. Further, GQD could restore Meth withdrawal-triggered pathway of GABAergic interneurons (GABA IN)-pyramidal neurons (PN) in the mPFC of Meth-withdrawn mice, especially the prelimbic cortex (PrL) sub-region and PV-positive GABA IN. While, GQD had no obvious effects on the glial cells in the mPFC of Meth-withdrawn mice. By transcriptomic analysis and validation of several gene candidates, we found that genes in the MAPK signalling pathway, especially those related to heat shock proteins, including Hspa1a, Hspa1b and Hspb1, might be GQD-targeting genes in mPFC to treat Meth withdrawal anxiety, as indicated that these genes were up-regulated by Meth withdrawal but rescued by GQD in mPFC. Collectively, our findings identified for the first time that GQD could efficiently alleviate Meth withdrawal anxiety, partially through regulating the local GABA IN-PN pathway and transcriptomic profile of mPFC. The present study confirms that TCM, such as GQD, will be a desirable therapeutic approach in the treatment of drug addiction and related emotional deficits.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Medicina Tradicional Chinesa , Ansiedade/tratamento farmacológico , Células Piramidais , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Interneurônios , Ácido gama-Aminobutírico
9.
Addict Biol ; 28(12): e13354, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38017642

RESUMO

Administration of cocaine increases synaptic dopamine levels by blocking dopamine reuptake and leads to increased locomotor activity and compulsive drug-seeking behaviour. It has been suggested that the lateral hypothalamus (LH) or lateral habenula (LHb) is involved in drug-seeking behaviours. To explore the role of the LH and the LHb in cocaine-induced psychomotor responses, we tested whether modulation of the LH or the LH-LHb circuit affects cocaine-induced locomotion. Cocaine-induced locomotor activity and dopamine release were suppressed by the activation of the LH with 2-[2,6-difluoro-4-[[2-[(phenylsulfonyl)amino]ethyl]thio]phenoxy]acetamide (PEPA), an AMPA receptor agonist. When the LH was inhibited by microinjection of a GABA receptor agonists mixture prior to cocaine injection, the cocaine's effects were enhanced. Furthermore, optogenetic activation of the LH-LHb circuit attenuated the cocaine-induced locomotion, while optogenetic inhibition of the LH-LHb circuit increased it. In vivo extracellular recording found that the LH sent a glutamatergic projection to the LHb. These findings suggest that the LH glutamatergic projection to the LHb plays an active role in the modulation of cocaine-induced psychomotor responses.


Assuntos
Cocaína , Habenula , Cocaína/farmacologia , Dopamina , Região Hipotalâmica Lateral , Agonistas GABAérgicos/farmacologia
10.
Opt Express ; 30(23): 42336-42346, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366689

RESUMO

We propose a novel type of waveguides, called the slot hybrid-core waveguides (HCWs), for temperature-independent integrated optical sensors. The HCWs are composed of different core materials having the opposite thermo-optic coefficients (TOCs) and, therefore, are immune to temperature variations. On this basis, slot HCWs are proposed for the microring resonator-based optical sensors, enabling the sensors to simultaneously present high sensitivities and temperature independence. The temperature-dependent wavelength shifts of the proposed sensors are calculated to be less than 1 pm/K while the sensitivities to the cladding refractive indices attain 468 nm/RIU and 536 nm/RIU, respectively, for the asymmetric and symmetric slot structures.

11.
Opt Lett ; 47(4): 961-964, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167569

RESUMO

We propose and experimentally demonstrate an on-chip switchable polarization beam splitter (PBS) using silicon waveguides. To the best of our knowledge, it is the first demonstration of an on-chip PBS that is not only able to split polarization beams but can be tuned to allow these beams to switch the output paths. The design of the switchable PBS is based on a directional coupler. Measurements show extinction ratios of >12 dB in both the initial state and the switched state, which is realized by heating the device up to 57°C. By adding switching ability to an on-chip PBS, this work is expected to benefit quantum technology, communications, microwave photonics, etc.

12.
Addict Biol ; 27(3): e13175, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470558

RESUMO

Paternal methamphetamine (METH) exposure results in long-term behavioural deficits in the sub-generations with a sex difference. Here, we aim to investigate the sex-specific neurobehavioural outcomes in the first-generation offspring mice (F1 mice) paternally exposed to METH prior to conception and explore the underlying brain mechanisms. We found that paternal METH exposure increased anxiety-like behaviours and spatial memory deficits only in female F1 mice and caused depression-like behaviours in the offspring without sex-specific differences. In parallel, METH-sired F1 mice exhibited sex-specific brain activity pattern in response to mild stimulus (in water at room temperature for 3 min). Overall, paternal METH exposure caused a blunting phenomenon of prelimbic cortex (PrL), infralimbic cortex (IL) and nucleus accumbens (NAc) core in both male and female F1 mice, as indicated by the decreased c-Fos levels under mild stimulus. Of note, the activity of central nucleus of the amygdala (CeA) by mild stimulus was triggered in male but suppressed in female F1 mice, whereas the neurons of orbitofrontal cortex (OFC), cingulate cortex (Cg1), NAc shell, medial habenula (mHb), dorsal hippocampal CA1 (dCA1) and ventral hippocampal CA1 (vCA1) were only blunted in female F1 mice. Taken together, the distinct brain stimulation patterns between male and female F1 mice might contribute to the sex-specific behavioural outcomes by paternal METH exposure, which indicate that sex differences should be considered in the treatment of offspring paternally exposed drugs.


Assuntos
Metanfetamina , Animais , Encéfalo , Feminino , Hipocampo , Masculino , Metanfetamina/farmacologia , Camundongos , Núcleo Accumbens , Córtex Pré-Frontal
13.
Addict Biol ; 27(1): e13068, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128302

RESUMO

Methamphetamine (METH) elicits endogenous glutamate (Glu) in the brain, which could partially explain METH-induced memory deficits. Here, we investigated the therapeutic effects of electroacupuncture (EA) on spatial memory deficits in METH withdrawal mice and its potential synaptic mechanisms. We found that EA at acupoints 'Baihui' and 'Yintang' ameliorated the impaired spatial memory in METH withdrawal mice. In parallel, EA attenuated the Glu levels in vivo and suppressed the neuronal activities within dCA1 of METH withdrawal mice, as indicated by the decreasing c-Fos levels and the amplitude of mEPSP. In the dCA1, EA decreased A1-like astrocytes but increased astrocytic glutamatergic transporting molecules including glutamate transporter 1 and glutamine synthase. However, EA seemed to have no effects on presynaptic Glu transmission from the dCA3, as evidenced by the similiar levels of c-Fos in the dCA3 neurons, synaptic vesicular markers of dCA3 neural terminals and values of paired-pulse ratio in the dCA1 neurons between EA-treated and sham EA-treated METH withdrawal mice. These findings suggest that EA might normalize the dCA1 Glu levels at least in part through enhancing astrocyte-mediated Glu clearance. Taken together, astrocytes might be a novel target for developing therapeutic interventions against the impaired memory behaviours in METH users, and EA represents a promising non-invasive therapeutic strategy for the management of drug-caused memory deficits.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Astrócitos/efeitos dos fármacos , Eletroacupuntura/métodos , Ácido Glutâmico/efeitos dos fármacos , Transtornos da Memória/terapia , Memória Espacial/efeitos dos fármacos , Animais , Masculino , Metanfetamina/farmacologia , Camundongos , Neurônios/efeitos dos fármacos
14.
Glia ; 69(10): 2404-2418, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110044

RESUMO

Methamphetamine (METH) is a common abused drug. METH-triggered glutamate (Glu) levels in dorsal CA1 (dCA1) could partially explain the etiology of METH-caused abnormal memory, but the synaptic mechanism remains unclear. Here, we found that METH withdrawal disrupted spatial memory in mice, accompanied by the increases in Glu levels and postsynaptic neuronal activities at dCA1 synapses. METH withdrawal weakened the capacity of Glu clearance in astrocytes, as indicated by increasing the A1-like astrocytes and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), decreasing the Glu transporter 1(GLT-1, also known as EAAT2 or SLC1A2), Glu-aspartate-transporter (GLAST also known as EAAT1 or SLC1A3) and astrocytic glutamine synthase (GS), but failed to affect the presynaptic Glu release from dCA3 within dCA1. Moreover, we identified that in vitro A1-like astrocytes exhibited an increased STAT3 activation and the impaired capacity of Glu clearance. Most importantly, selective knockdown of astrocytic STAT3 in vivo in dCA1 restored the astrocytic capacity of Glu clearance, normalized Glu levels at dCA1 synapses, and finally rescued METH withdrawal-disrupted spatial memory in mice. Thus, astrocytic Glu clearance system, especially STAT3, serves as a novel target for future therapies against METH neurotoxicity.


Assuntos
Astrócitos , Metanfetamina , Animais , Astrócitos/fisiologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico , Metanfetamina/toxicidade , Camundongos , Fator de Transcrição STAT3/genética , Memória Espacial
15.
FASEB J ; 34(9): 11913-11924, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683743

RESUMO

We recently found that adolescent cocaine exposure (ACE) resulted in an enhancement of the γ-aminobutyric acid (GABA) neurotransmitter system in the prelimbic cortex (PrL) of adult mice. Here, we aim to further investigate the role of GABAergic transmission, especially parvalbumin (PV) interneurons within PrL in the development of ACE-induced anxiety-like behavior, and to assess whether and how electro-acupuncture (EA) therapeutically manage the ACE-induced abnormal behaviors in adulthood. ACE mice exhibited the enhanced anxiety-like behaviors in their adulthood, accompanied by increased GABAergic transmission and PV interneurons in PrL. Chemogenetic blocking PV interneurons in PrL alleviated ACE-enhanced anxiety-like behaviors in mice. Importantly, 37-day EA treatments (mixture of 2 Hz/100 Hz, 1 mA, 30 minutes once a day) at the acupoints of Yintang (GV29) and Baihui (GV20) also alleviated ACE-induced anxiety-like behaviors, and rescued ACE-impaired GABAergic neurotransmitter system and PV interneurons in PrL. In parallel, EA treatments further suppressed the activities of pyramidal neurons in PrL, suggesting that EA treatments seem to perform it beneficial effects on the ACE-induced abnormal emotional behaviors by "calming down" the whole PrL. Collectively, these findings revealed that hyper-function of GABAergic transmission, especially mediating by PV interneurons in PrL may be key etiology underlying ACE-induced anxiety-like behaviors. At least by normalizing the function of GABAergic and PV interneurons, EA may represent a promising therapeutic strategy for managing adolescent substance use-related emotional disorders.


Assuntos
Ansiedade , Comportamento Animal , Transtornos Relacionados ao Uso de Cocaína , Eletroacupuntura , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/terapia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/terapia , Sistema Límbico/metabolismo , Sistema Límbico/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos
16.
Opt Express ; 28(26): 39084-39092, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379466

RESUMO

We report on the nonlinear characterizations of the titanium dioxide micro-ring resonators (TiO2 MRRs). By utilizing optimized fabrication processes, high quality factors (Q∼1.4 × 105) doubling that of the previous work are achieved here for TiO2 MRRs with high-confinement TiO2 waveguides. The four-wave mixing (FWM) experiment results with low and high signal power demonstrate that, the fabricated TiO2 MRRs can perform broadband (∼40 nm) wavelength conversion and cascaded FWMs. These achievements pave the way for key nonlinear photonic applications with TiO2 waveguides and provide an efficient platform for various integrated photonic devices.

17.
Opt Lett ; 45(18): 5012-5015, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932440

RESUMO

Titanium dioxide (TiO2) microring resonators (MRRs) with high quality factors (Qs) are demonstrated by using a new, to the best of our knowledge, bottom-up fabrication method. Pattern platforms with a T-shaped cross section are first defined by etching a thin top layer of silicon nitride and a thick bottom layer of silica and partially undercutting the silica. Then, TiO2 is deposited on the platforms to form the TiO2 waveguides and devices. TiO2 MRRs with different bending radii, waveguide widths, and gaps in the bus waveguide are fabricated and measured. The intrinsic Q(Qint) is achieved to be ∼1.1×105 at the telecommunication wavelengths, corresponding to a bend waveguide loss of 3.9 dB/cm while the compact MRR with a radius of 10 µm can still sustain a Qint of ∼105. These results not only unfold the feasibilities of the proposed bottom-up method for fabricating TiO2 waveguides and MRRs with high Qs and compact footprints but also suggest a new approach for fabricating waveguides in other materials, of which direct etching is not easily accessible.

18.
Opt Lett ; 45(17): 4806-4809, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870862

RESUMO

Silicon photonic integrated circuits (PICs) show great potential for many applications. The phase tuning technique is indispensable and of great importance in silicon PICs. An optical phase shifter with balanced overall performance on power consumption, insertion loss, footprint, and modulation bandwidth is essential for harnessing large-scale integrated photonics. However, few proposed phase shifter schemes on various platforms have achieved a well-balanced performance. In this Letter, we experimentally demonstrate a thermo-optic phase shifter based on a densely distributed silicon spiral waveguide on a silicon-on-insulator platform. The phase shifter shows a well-balanced performance in all aspects. The electrical power consumption is as low as 3 mW to achieve a π phase shift, the optical insertion loss is 0.9 dB per phase shifter, the footprint is 67×28µm2 under a standard silicon photonics fabrication process without silicon air trench or undercut process, and the modulation bandwidth is measured to be 39 kHz.

19.
FASEB J ; 33(7): 8614-8622, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31034782

RESUMO

We have recently shown in rats that adolescent cocaine exposure induces prolonged modifications on synapses in medial prefrontal cortex (mPFC), which might contribute to long-term behavioral outcomes in adulthood. In this study, we further investigated the molecular mechanisms underlying adolescent cocaine exposure-related psychiatric problems in adulthood, especially focusing on the alterations of GABAergic transmission in prelimbic cortex (PrL), 1 subregion of mPFC. Consistent with a previous study, adolescent cocaine-exposed mice exhibited enhanced anxiety-like behaviors in their adulthood. In the same mice models, depression-like behaviors increased as well, but the conditioned place preference formed normally. In parallel, activities of pyramidal neurons at layer V of PrL were reduced after adolescent cocaine exposure, accompanied by an increase in the percentage of symmetric synapses in PrL of adult mice. Additionally, miniature inhibitory postsynaptic currents rather than miniature excitatory postsynaptic currents were increased on these pyramidal neurons, and increased levels of GABA were found in adult PrL. The molecules in the GABAergic system in adult PrL were also changed by adolescent cocaine use, as indicated by increased glutamate decarboxylase 67 kDa, GABAA-α1, and decreased GABA transporter 1. In the same mice, some regulators to GABAergic transmission such as neuregulin 1/ErbB4 signals were heightened as well. Collectively, these findings revealed that adolescent cocaine exposure results in permanent enhancement of GABAergic transmission on pyramidal neurons in PrL, which subsequently attenuate the activities of these neurons and ultimately contributes to the development of psychiatric disorders in later life.-Shi, P., Nie, J., Liu, H., Li, Y., Lu, X., Shen, X., Ge, F., Yuan, T.-F., Guan, X. Adolescent cocaine exposure enhances the GABAergic transmission in the prelimbic cortex of adult mice.


Assuntos
Cocaína/efeitos adversos , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Sinapses/metabolismo
20.
FASEB J ; 33(1): 1360-1373, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30148678

RESUMO

Neuropathic pain remains a therapeutic challenge because of its complicated mechanisms. Mas-related GPCR D (MrgprD) is specifically expressed in small-diameter, nociceptive neurons of dorsal root ganglia (DRGs) and is implicated in pain modulation. However, the underlying mechanism of MrgprD involved in neuropathic pain remains elusive. In this study, we used behavioral experiments and physiologic examination methods to investigate the role of MrgprD in chronic constriction injury (CCI)-induced neuropathic pain. We found that MrgprD is necessary for the initiation of mechanical hypersensitivity and cold allodynia, but not for heat allodynia. Moreover, we demonstrated that transient receptor potential cation channel (TRP)-A1 was the ion channel downstream of MrgprD, and the ß-alanine-induced calcium signal was attributed mostly to TRP-A1 function. We further showed that PKA serves as a downstream mediator of ß-alanine-activated MrgprD signaling to activate TRP-A1 in DRG neurons and in human embryonic kidney 293 cells, to coexpress MrgprD and TRP-A1 plasmids. Finally, we found that the ß-alanine-induced pain behavior was increased, whereas the itching behavior was unchanged in CCI models compared with sham-injured animals. Knockout of TRPA1 also attenuated the ß-alanine-induced pain behavior in CCI models. In conclusion, MrgprD is essential in cold allodynia in CCI-induced neuropathic pain through the PKA-TRP-A1 pathway. TRP-A1 facilitates MrgprD to development of neuropathic pain. Our findings reveal a novel mechanism of neuropathic pain formation and highlight MrgprD as a promising drug target for the treatment of neuropathic pain.-Wang, C., Gu, L., Ruan, Y., Geng, X., Xu, M., Yang, N., Yu, L., Jiang, Y., Zhu, C., Yang, Y., Zhou, Y., Guan, X., Luo, W., Liu, Q., Dong, X., Yu, G., Lan, L., Tang, Z. Facilitation of MrgprD by TRP-A1 promotes neuropathic pain.


Assuntos
Neuralgia/fisiopatologia , Receptores Acoplados a Proteínas G/fisiologia , Canal de Cátion TRPA1/fisiologia , Animais , Sinalização do Cálcio , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPA1/genética , Regulação para Cima , beta-Alanina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA