RESUMO
Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.
Assuntos
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Triterpenos , Humanos , Ácido Láctico , Lipossomos , Neoplasias Pancreáticas/tratamento farmacológico , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Triterpenos/farmacologia , Ácido UrsólicoRESUMO
Candida albicans forms extremely drug-resistant biofilms, which present a serious threat to public health globally. Biofilm-based infections are difficult to treat due to the lack of efficient antifungal therapeutics, resulting in an urgent demand for the development of novel antibiofilm strategies. In this study, the antibiofilm activity of DiMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) was evaluated against C. albicans biofilms. DiMIQ is a synthetic derivative of indoquinoline alkaloid neocryptolepine isolated from a medicinal African plant, Cryptolepis sanguinolenta. Antifungal activity of DiMIQ was determined using the XTT assay, followed by cell wall and extracellular matrix profiling and cellular proteomes. Here, we demonstrated that DiMIQ inhibited C. albicans biofilm formation and altered fungal cell walls and the extracellular matrix. Cellular proteomics revealed inhibitory action against numerous translation-involved ribosomal proteins, enzymes involved in general energy producing processes and select amino acid metabolic pathways including alanine, aspartate, glutamate, valine, leucine and isoleucine. DiMIQ also stimulated pathways of cellular oxidation, metabolism of carbohydrates, amino acids (glycine, serine, threonine, arginine, phenylalanine, tyrosine, tryptophan) and nucleic acids (aminoacyl-tRNA biosynthesis, RNA transport, nucleotide metabolism). Our findings suggest that DiMIQ inhibits C. albicans biofilms by arresting translation and multidirectional pathway reshaping of cellular metabolism. Overall, this agent may provide a potent alternative to treating biofilm-associated Candida infections.
Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Carbolinas/farmacologia , Proteínas de Neoplasias/metabolismo , ProteômicaRESUMO
The needles of conifer trees are one of the richest sources of natural polyprenols. Polyprenol homologs from Abies sibirica L. lipophilic 80% purified extract were analyzed and quantified. In total, 10 peaks (Prenol-11 to Prenol-20) were observed in the ultra-high-performance liquid chromatography-diode array detector (UHPLC-DAD) chromatogram of Siberian fir with the most abundant compound being Prenol-15 (relative amount 37.23 + 0.56% of the total polyprenol yield). Abies sibirica L. polyprenol solubility and incorporation efficiency into liposomes were studied in various commercially available lecithin mixtures (Phosal IP40, Phosal 75SA, and Lipoid P45). The resulting multilamellar polyprenol liposomes were morphologically characterized by Light and Transmission Electron Microscopy, and the liposome size was discovered to be polymodal with the main peak at 1360 nm (90% of the volume). As polyprenols are fully soluble only in lipids, a liposomal formulation based upon co-solubilization and a modified ethanol injection method of polyprenols into the ethanol-phospholipid system was developed for the entrapment and delivery of polyprenols for potential commercial applications in food supplement and cosmetic industries.
Assuntos
Abies/química , Lipossomos/análise , Lipossomos/química , Poliprenois/análise , Poliprenois/química , Fenômenos Químicos , Cromatografia Líquida de Alta Pressão , Peso Molecular , Extratos Vegetais/química , SolventesRESUMO
The virulence of bacterial outer membrane vesicles (OMVs) contributes to innate microbial defense. Limited data report their role in interspecies reactions. There are no data about the relevance of OMVs in bacterial-yeast communication. We hypothesized that model Moraxella catarrhalis OMVs may orchestrate the susceptibility of pathogenic bacteria and yeasts to cationic peptides (polymyxin B) and serum complement. Using growth kinetic curve and time-kill assay we found that OMVs protect Candida albicans against polymyxin B-dependent fungicidal action in combination with fluconazole. We showed that OMVs preserve the virulent filamentous phenotype of yeasts in the presence of both antifungal drugs. We demonstrated that bacteria including Haemophilus influenza, Acinetobacter baumannii, and Pseudomonas aeruginosa coincubated with OMVs are protected against membrane targeting agents. The high susceptibility of OMV-associated bacteria to polymyxin B excluded the direct way of protection, suggesting rather the fusion mechanisms. High-performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV) and zeta-potential measurement revealed a high sequestration capacity (up to 95%) of OMVs against model cationic peptide accompanied by an increase in surface electrical charge. We presented the first experimental evidence that bacterial OMVs by sequestering of cationic peptides may protect pathogenic yeast against combined action of antifungal drugs. Our findings identify OMVs as important inter-kingdom players.
Assuntos
Bactérias/patogenicidade , Membrana Celular/metabolismo , Proteínas do Sistema Complemento/farmacologia , Vesículas Extracelulares/metabolismo , Peptídeos/farmacologia , Soro/metabolismo , Leveduras/patogenicidade , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cátions , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Moraxella/metabolismo , Polimixina B/farmacologia , Eletricidade Estática , Virulência/efeitos dos fármacos , Leveduras/efeitos dos fármacos , Leveduras/crescimento & desenvolvimentoRESUMO
INTRODUCTION: Certainly, pancreatic ductal adenocarcinoma poses one of the greatest challenges in current oncology. The dense extracellular matrix and low vessel density in PDA tumor impede the effective delivery of drugs, primarily due to the short pharmacokinetics of most drugs and potential electrostatic interactions with stroma components. AREA COVERED: Owing to the distinctive metabolism of PDA and challenges in accessing nutrients, there is a growing interest in cell metabolism inhibitors as a potential means to inhibit cancer development. However, even if suitable combinations of inhibitors are identified, the question about their administration remains, as the same hindrances that impede effective treatment with conventional drugs will also hinder the delivery of inhibitors. Methods including nanotechnology to increase drugs in PDA penetrations are reviewed and discussed. EXPERT OPINION: Pancreatic cancer is one of the most difficult tumors to treat due to the small number of blood vessels, high content of extracellular matrix, and specialized resistance mechanisms of tumor cells. One possible method of treating this tumor is the use of metabolic inhibitors in combinations that show synergy. Despite promising results in in vitro tests, their effect is uncertain due to the tumor's structure. In the case of pancreatic cancer, priming of the tumor tissue is required through the sequential administration of drugs that generate blood vessels, increase blood flow, and enhance vascular permeability and extracellular matrix. The use of drug carriers with a size of 10-30 nm may be crucial in the therapy of this cancer.
Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanotecnologia , Neoplasias Pancreáticas , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Portadores de Fármacos/química , Matriz Extracelular/metabolismoRESUMO
New amide conjugates 1-6 of hydroxycinnamic acids (HCA) and 5'-deoxy-5-fluorocytidine (5-dFCR), the prodrug of 5-fluorouracil (5-FU), were synthesized and tested in vitro against pancreatic cancer lines (PDAC). The compounds showed slightly higher efficacy against primary BxPC-3 cells (IC50 values of 14-45 µM) than against metastatic AsPC-1 (IC50 values of 37-133 µM), and similar to that of 5-FU for both PDAC lines. Compound 1, which has a para-(acetyloxy)coumaroyl substituent, was found to be the most potent (IC50 = 14 µM) with a selectivity index of approximately 7 to normal dermal fibroblasts (IC50 = 96 µM). The potential pharmacological profiles were discussed on the basis of the ADME data. Docking to the carboxylesterase CES2 showed that the synthesized compounds have the ability to bind via hydrogen bonding between a specific acetate group of the sugar moiety and Ser228, which belongs to the catalytic triad that causes hydrolysis. Docking to albumin, a major transport protein in the circulatory system, revealed a strong interaction of the conjugates at the binding site which is native to warfarin and responsible for its transport in the body.
RESUMO
The paper presents experimental investigations of diffusion of antibiotics (ciprofloxacin or ampicillin) into the water phase from mixtures of neutral or negatively charged liposomes, and antibiotic-liposome interactions. Using the laser interferometry technique, the amounts and fluxes of released antibiotics, concentration field evolution, and the velocity of the concentration boundary layer's "growth" were determined. To avoid the limitations of membranes, a measurement system without the artificial boundary of phases with a free water-solution interface has been proposed. It was found that the diffusion of anionic and neutral liposomes into the water phase was insignificant and mainly the diffusion of antibiotics was measured. Differences in the diffusion kinetics of ciprofloxacin and ampicillin from liposomal solutions to the water phase were observed. Ampicillin diffused more efficiently than ciprofloxacin regardless of the liposomal solution type. Moreover, the amount of ampicillin and ciprofloxacin released from the anionic liposomal phase was higher than that from the neutral one. Our results confirm that ciprofloxacin at neutral pH shows little tendency to bind neutral liposomes. Additionally, it was also observed that ciprofloxacin disrupts negatively charged liposomes as a final effect of antibiotic-lipid interactions.
Assuntos
Ampicilina/análise , Antibacterianos/química , Ciprofloxacina/análise , Difusão , Lasers , Água/química , Concentração de Íons de Hidrogênio , Interferometria , Lipossomos , SoluçõesRESUMO
The aim of the study was to achieve effective colon anticancer immunotherapy using the alkaloid berberine. In the presented paper we attempt to develop a formulation of berberine loaded into liposomal carriers using the vitamin C gradient method, characterized by efficient drug encapsulation, high stability during long-term storage, low drug release in human plasma with specific cytotoxicity towards colon cancer cells. Liposomal berberine was responsible for the induction of oxidative stress, the presence of Ca2+ ions in the cytosol, the reduction of Δψm, and ATP depletion with a simultaneous lack of caspase activity. Moreover, treatment with liposomal berberine led to CRT exposure on the surface of cancer cells, extracellular ATP, and HMGB1 release. The above-described mechanism of action was most likely associated with ICD induction, contributing to the increased number of phagocytic cancer cells. We have shown that cancer cells treated with liposomal berberine were phagocytosed more frequently by macrophages compared to the untreated cancer cells. What is more, we have shown that macrophage pre-treatment with liposomal berberine led to a 3-fold change in the number of phagocytosed SW620 cancer cells. The obtained results provide new insights into the role of berberine in maintaining the immune response against colorectal cancer.
RESUMO
Pancreatic cancer (PC) is one of the deadliest cancers so there is an urgent need to develop new drugs and therapies to treat it. Liposome-based formulations of naturally-derived bioactive compounds are promising anticancer candidates due to their potential for passive accumulation in tumor tissues, protection against payload degradation, and prevention of non-specific toxicity. We chose the naturally-derived flavonoid baicalein (BAI) due to its promising effect against pancreatic ductal adenocarcinoma (PDAC) and encapsulated it into a liposomal bilayer using the passive loading method, with an almost 90% efficiency. We performed a morphological and stability analysis of the obtained BAI liposomal formulation and evaluated its activity on two-dimensional and three-dimensional pancreatic cell models. As the result, we obtained a stable BAI-encapsulated liposomal suspension with a size of 100.9 nm ± 2.7 and homogeneity PDI = 0.124 ± 0.02, suitable for intravenous administration. Furthermore, this formulation showed high cytotoxic activity towards AsPC-1 and BxPC-3 PDAC cell lines (IC50 values ranging from 21 ± 3.6 µM to 27.6 ± 4.1 µM), with limited toxicity towards normal NHDF cells and a lack of hemolytic activity. Based on these results, this new BAI liposomal formulation is an excellent candidate for potential anti-PDAC therapy.
RESUMO
New protocol for the preparation of the novel caffeic acid derivatives using the Wittig reaction has been applied to follow the principles of green chemistry. The compounds have been evaluated against chloroquine-sensitive and chloroquine-resistant P. falciparum strains. Their cytotoxicity to normal human dermal fibroblasts and their propensity to induce hemolysis have been also determined. Ethyl (2E)-3-(2,3,4-trihydroxyphenyl)-2-methylpropenoate has exhibited the highest antiplasmodial activity against P. falciparum strains without the cytotoxic and hemolytic effects. This derivative is significantly more potent than caffeic acid parent structure. The application of our one-step procedure has been shown to be rapid and efficient. It allows for an easy increase of input data to refine the structure-activity relationship model of caffeates as the antimalarials. The one-step approach meets the conditions of "atom economy" and eliminates hazardous materials. Water has been used as the effective medium for the Wittig reaction to avoid toxic organic solvents.
RESUMO
A series of novel diosgenin (DSG) derivatives has been synthesized and tested in vitro for their antioxidant activity. Initially, four analogues have been evaluated for their cytotoxicity using normal human skin fibroblast (NHDF) as model cells. As a result, 84% of NHDF cells were still alive at 5 µM, so these compounds can be considered as innoxious to fibroblasts at this concentration. Then, hemolytic activity against human erythrocytes was studied in order to evaluate the potential impact of tested compounds against normal host cells. The result < 5% of hemolysis rates suggest no lytic activity for most compounds. After that, the main test - evaluation the antioxidant effect of DSG and its new derivatives against lipid peroxidation in the o/w emulsion model - was performed. The most promising compound (8) exhibited the significant antioxidant activity and the biocompatibility towards normal human dermal fibroblasts and red bloods cells. This p-aminobenzoic derivative revealed 61.6% blocking of induced lipid oxidation. Furthermore, eleven predicted ADME properties were predicted for all tested compounds and revealed that they are in compliance with drug-likeness criteria.
Assuntos
Diosgenina , Humanos , Diosgenina/farmacologia , Antioxidantes/farmacologia , Hemólise , Morte CelularRESUMO
Among all the types of cancer, Pancreatic Ductal Adenocarcinoma remains one of the deadliest and hardest to fight and there is a critical unmet need for new drugs and therapies for its treatment. Naturally derived compounds, such as pentacyclic triterpenoids, have gathered attention because of their high cytotoxic potential towards pancreatic cancer cells, with a wide biological activity spectrum, with ursolic acid (UA) being one of the most interesting. However, due to its minimal water solubility, it is necessary to prepare a nanocarrier vehicle to aid in the delivery of this compound. Poly(lactic-co-glycolic acid) or PLGA polymeric nanocarriers are an essential tool for ursolic acid delivery and can overcome the lack in its biological activity observed after incorporating within liposomes. We prepared UA-PLGA nanoparticles with a PEG modification, to achieve a long circulation time, by using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay towards AsPC-1 and BxPC-3 cells, with TEM visualization of the nanoparticles and their cellular uptake. We established repeatable preparation procedures of the nanoparticles and achieved biologically active nanocarriers with an IC50 below 30 µM, with an appropriate size for intravenous dosage (around 140 nm), high sample homogeneity (below 0.2) and reasonable encapsulation efficiency (up to 50%). These results represent the first steps in the development of potentially effective PDAC therapies based on novel biologically active and promising triterpenoids.
RESUMO
The taxanes are commonly used in the treatment of many types of cancer. The disadvantages of using taxanes in therapy are their low solubility in water, the toxicity or relatively poor pharmacokinetics of existing formulations. Using liposomes as carriers would help in overcoming these problems, however, their use is limited by the low incorporation efficiency of taxane molecules within bilayer and by subsequent drug crystallization. Most of published taxanes liposomal formulations use natural soy phosphatidylcholine (PC) as main liposomes lipid. This allows a relatively good drug retention during the liposomes storage, but on the other hand, the use of liposomes with more liquid bilayer facilitates fast drug release after its intravenous administration. In order to decrease the drug release from liposomes in circulation, we used pegylated HSPC (hydrogenated soy PC) liposomes containing a novel synthetic 3-n-pentadecylphenol derivative - KW101, that showed a remarkably stabilizing action for the docetaxel (DTX) dopped HSPC liposomes over 30 days, expressed by the inhibition of DTX crystallization. The resulting liposomes with DTX showed similar cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines and higher toxicity in drug-resistant NCI/ADR-RES cell line in comparison with the free DTX. Moreover, this formulation has good pharmacokinetics in mice, in comparison to control pegylated DTX formulation composed of egg phosphatidylcholine (ePC). This novel liposomal formulation of docetaxel consisting of HSPC with the stabilizing compound KW101, appears to be a promising carrier for DTX cancer therapy.
Assuntos
Antineoplásicos , Neoplasias , Animais , Linhagem Celular Tumoral , Docetaxel , Liberação Controlada de Fármacos , Humanos , Lipossomos , Células MCF-7 , Camundongos , PolietilenoglicóisRESUMO
The research focused on the investigation of curcumin encapsulated in hydrogenated soy phosphatidylcholine liposomes and its increased photoactive properties in photodynamic therapy (PDT). The goal of this study was two-fold: to emphasize the role of a natural photoactive plant-based derivative in the liposomal formulation as an easily bioavailable, alternative photosensitizer (PS) for the use in PDT of skin malignancies. Furthermore, the goal includes to prove the decreased cytotoxicity of phototoxic agents loaded in liposomes toward normal skin cells. Research was conducted on melanoma (MugMel2), squamous cell carcinoma (SCC-25), and normal human keratinocytes (HaCaT) cell lines. The assessment of viability with MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) evaluated cell death after exposure to blue light irradiation after 4 h of pre-incubation with free and encapsulated curcumin. Additionally, the wound healing assay, flow cytometry, and immunocytochemistry to detect apoptosis were performed. The malignant cells revealed increased phototoxicity after the therapy in comparison to normal cells. Moreover, liposome curcumin-based photodynamic therapy showed an increased ratio of apoptotic and necrotic cells. The study also demonstrated that nanocurcumin significantly decreased malignant cell motility following PDT treatment. Acquired results suggest that liposomal formulation of a poor soluble natural compound may improve photosensitizing properties of curcumin-mediated PDT treatment in skin cancers and reduce toxicity in normal keratinocytes.
RESUMO
Many studies are being performed to develop effective carriers for controlled cytostatic delivery wherein albumin is a promising material due to its tendency to accumulate near cancer cells. The novelty of this work involves the development of the synthesis methodology of albumin nanoparticles and their biological and physicochemical evaluation. Albumin particles were obtained via the salt-induced precipitation and K3PO4 was used as a salting-out agent. Various concentrations of protein and salting-out agent solutions were mixed using a burette or a syringe system. It was proved that the size of the particles depended on the concentrations of the reagents and the methodology applied. As a result of a process performed using a burette and 2 M K3PO4, albumin spheres having a size 5-25 nm were obtained. The size of nanospheres and their spherical shape was confirmed via TEM analysis. The use of a syringe system led to preparation of particles of large polydispersity. The highest albumin concentration allowing for synthesis of homogeneous particles was 2 g/L. The presence of albumin in spheres was confirmed via the FT-IR technique and UV-Vis spectroscopy. All samples showed no cytotoxicity towards normal human dermal fibroblasts and no hemolytic properties against human erythrocytes (the hemolysis did not exceed 2.5%).
RESUMO
Alternative therapies are necessary for the treatment of malaria due to emerging drug resistance. However, many promising antimalarial compounds have poor water solubility and suffer from the lack of suitable delivery systems, which seriously limits their activity. To address this problem, we synthesized a series of azacarbazoles that were evaluated for antimalarial activity against D10 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of P. falciparum. The most active compound, 9H-3-azacarbazole (3), was encapsulated in a novel o/w nanoemulsion consisting of ethyl esters of polyunsaturated fatty acids n-3 and n-6 obtained from flax oil as the oil phase, Smix (Tween 80 and Transcutol HP) and water. This formulation was further analyzed using transmission electron microscopy, dynamic light scattering and in vitro and in vivo studies. It was shown that droplets of the 3-loaded nanosystem were spherical, with satisfactory stability, without cytotoxicity towards fibroblasts and intestinal cell lines at concentrations corresponding to twice the IC50 for P. falciparum. Moreover, the nanoemulsion with this type of oil phase was internalized by Caco-2 cells. Additionally, pharmacokinetics demonstrated rapid absorption of compound 3 (tmax = 5.0 min) after intragastric administration of 3-encapsulated nanoemulsion at a dose of 0.02 mg/kg in mice, with penetration of compound 3 to deep compartments. The 3-encapsulated nanoemulsion was found to be 2.8 and 4.2 times more effective in inhibiting the D10 and W2 strains of the parasite, respectively, compared to non-encapsulated 3. Our findings support a role for novel o/w nanoemulsions as delivery vehicles for antimalarial drugs.
RESUMO
Malaria is an enormous threat to public health, due to the emergence of Plasmodium falciparum resistance to widely-used antimalarials, such as chloroquine (CQ). Current antimalarial drugs are aromatic heterocyclic derivatives, most often containing a basic component with an added alkyl chain in their chemical structure. While these drugs are effective, they have many side effects. This paper presents the synthesis and preliminary physicochemical characterisation of novel bioinspired imidazolidinedione derivatives, where the imidazolidinedione core was linked via the alkylene chain and the basic piperazine component to the bicyclic system. These compounds were tested against the asexual stages of two strains of P. falciparum-the chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains. In parallel, in vitro cytotoxicity was investigated on a human keratinocyte cell line, as well as their hemolytic activity. The results demonstrated that the antiplasmodial effects were stronger against the W2 strain (IC50 between 2424.15-5648.07 ng/mL (4.98-11.95 µM)), compared to the D10 strain (6202.00-9659.70 ng/mL (12.75-19.85 µM)). These molecules were also non-hemolytic to human erythrocytes at a concentration active towards the parasite, but with low toxicity to mammalian cell line. The synthetized derivatives, possessing enhanced antimalarial activity against the CQ-resistant strain of P. falciparum, appear to be interesting antimalarial drug candidates.
Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Imidazolidinas/química , Imidazolidinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Linhagem Celular , Técnicas de Química Sintética , Cloroquina/farmacologia , Descoberta de Drogas , Resistência a Medicamentos , Hemólise/efeitos dos fármacos , Humanos , Imidazolidinas/síntese química , Malária Falciparum/tratamento farmacológicoRESUMO
Pancreatic cancer belongs to the most aggressive group of cancers, with very poor prognosis. Therefore, there is an important need to find more potent drugs that could deliver an improved therapeutic approach. In the current study we searched for selective and effective caffeic acid derivatives. For this purpose, we analyzed twelve compounds and evaluated their in vitro cytotoxic activity against two human pancreatic cancer cell lines, along with a control, normal fibroblast cell line, by the classic MTT assay. Six out of twelve tested caffeic acid derivatives showed a desirable effect. To improve the therapeutic efficacy of such active compounds, we developed a formulation where caffeic acid derivative (7) was encapsulated into liposomes composed of soybean phosphatidylcholine and DSPE-PEG2000. Subsequently, we analyzed the properties of this formulation in terms of basic physical parameters (such as size, zeta potential, stability at 4 °C and morphology), hemolytic and cytotoxic activity and cellular uptake. Overall, the liposomal formulation was found to be stable, non-hemolytic and had activity against pancreatic cancer cells (IC50 19.44 µM and 24.3 µM, towards AsPC1 and BxPC3 cells, respectively) with less toxicity against normal fibroblasts. This could represent a promising alternative to currently available treatment options.
RESUMO
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Lipossomos/química , Melanoma/patologia , Nanoestruturas/química , Pirimidinas/química , Rutênio/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Cápsulas , Linhagem Celular Tumoral , Complexos de Coordenação/administração & dosagem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Triazóis/químicaRESUMO
BACKGROUND: Many aspects are currently being investigated, with the aim of improving the application of PDT in the clinic by rendering it more effective. One of the current trends focuses on the use of nanocarriers. The aim of this study is to describe novel photosensitizers among polyol amide chlorin e6 derivatives for photodynamic therapy (PDT) using liposomes. METHODS: In addition to their intracellular localization and antiproliferative activity against HCT116 cells, appropriate photophysical features have been determined (especially high 1O2 quantum yield production). RESULTS AND CONCLUSIONS: Fluorescent microscopy demonstrated that the compounds entered the endoplasmic reticulum (ER), lysosomes, mitochondria and partially the cytoplasm. All of the chlorins showed no dark cytotoxicity; however, high phototoxicity was observed. Using optical and electron microscopy, we investigated the impact of chlorin-based PDT upon cell damage leading to cell death. Chl ara 3 was identified as the most promising compound among polyol amide chlorin e6 derivatives and improved phototoxicity was observed as compared with a clinically approved temoporfin. Our results indicate that newly-synthesized chlorins seem to be promising candidates for PDT application, and two of them (chl ara 3 and chl mme 2) may create promising new drugs, both in the form of a free compound and as a liposomal formulation.