Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30526160

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva/tendências , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Engenharia Genética , Humanos , Neoplasias/imunologia , Linfócitos T/transplante , Estados Unidos , United States Food and Drug Administration
2.
Cell ; 184(25): 6081-6100.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34861191

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Pancreáticas/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Inibidoras de Diferenciação/imunologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Proteínas de Neoplasias/imunologia , Fatores de Transcrição SOXC/imunologia
3.
Immunity ; 44(2): 380-90, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26885860

RESUMO

Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Vacinas Anticâncer/imunologia , Imunoterapia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Antígenos CD28/genética , Respiração Celular , Células Cultivadas , Glicólise , Humanos , Memória Imunológica , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Neoplasias/imunologia , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
4.
Br J Haematol ; 204(5): 1649-1659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362778

RESUMO

Several products containing chimeric antigen receptor T cells targeting CD19 (CART19) have been approved for the treatment of patients with relapsed/refractory non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukaemia (ALL). Despite very impressive response rates, a significant percentage of patients experience disease relapse and die of progressive disease. A major cause of CART19 failure is loss or downregulation of CD19 expression in tumour cells, which has prompted a myriad of novel strategies aimed at targeting more than one antigen (e.g. CD19 and CD20 or CD22). Dual targeting can the accomplished through co-administration of two separate products, co-transduction with two different vectors, bicistronic cassettes or tandem receptors. In this manuscript, we review the pros and cons of each strategy and the clinical results obtained so far.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Antígenos CD19/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD20/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Antígenos de Neoplasias/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
6.
Blood ; 124(7): 1070-80, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24986688

RESUMO

With the notable exception of B-cell malignancies, the efficacy of chimeric antigen receptor (CAR) T cells has been limited, and CAR T cells have not been shown to expand and persist in patients with nonlymphoid tumors. Here we demonstrate that redirection of primary human T cells with a CAR containing the inducible costimulator (ICOS) intracellular domain generates tumor-specific IL-17-producing effector cells that show enhanced persistence. Compared with CARs containing the CD3ζ chain alone, or in tandem with the CD28 or the 4-1BB intracellular domains, ICOS signaling increased IL-17A, IL-17F, and IL-22 following antigen recognition. In addition, T cells redirected with an ICOS-based CAR maintained a core molecular signature characteristic of TH17 cells and expressed higher levels of RORC, CD161, IL1R-1, and NCS1. Of note, ICOS signaling also induced the expression of IFN-γ and T-bet, consistent with a TH17/TH1 bipolarization. When transferred into mice with established tumors, TH17 cells that were redirected with ICOS-based CARs mediated efficient antitumor responses and showed enhanced persistence compared with CD28- or 4-1BB-based CAR T cells. Thus, redirection of TH17 cells with a CAR encoding the ICOS intracellular domain is a promising approach to augment the function and persistence of CAR T cells in hematologic malignancies.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Complexo CD3/genética , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citometria de Fluxo , Humanos , Imunoterapia Adotiva/métodos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Subunidade gama Comum de Receptores de Interleucina/genética , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Células K562 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th1/metabolismo , Células Th17/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Interleucina 22
7.
Methods Mol Biol ; 2748: 151-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070114

RESUMO

CAR-T cell therapy is revolutionizing the treatment of hematologic malignancies. However, there are still many challenges ahead before CAR-T cells can be used effectively to treat solid tumors and certain hematologic cancers, such as T-cell malignancies. Next-generation CAR-T cells containing further genetic modifications are being developed to overcome some of the current limitations of this therapy. In this regard, genome editing is being explored to knock out or knock in genes with the goal of enhancing CAR-T cell efficacy or increasing access. In this chapter, we describe in detail a protocol to knock out genes on CAR-T cells using CRISPR-Cas9 technology. Among various gene editing protocols, due to its simplicity, versatility, and reduced toxicity, we focused on the electroporation of ribonucleoprotein complexes containing the Cas9 protein together with sgRNA. All together, these protocols allow for the design of the knockout strategy, CAR-T cell expansion and genome editing, and analysis of knockout efficiency.


Assuntos
Edição de Genes , Neoplasias , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Linfócitos T , Neoplasias/genética
8.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670972

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


Assuntos
Antígeno B7-H1 , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Animais , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Sistemas CRISPR-Cas , Camundongos Endogâmicos NOD
9.
Hum Gene Ther ; 34(17-18): 853-869, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37694593

RESUMO

Advanced gene transfer technologies and profound immunological insights have enabled substantial increases in the efficacy of anticancer adoptive cellular therapy (ACT). In recent years, the U.S. Food and Drug Administration and European Medicines Agency have approved six engineered T cell therapeutic products, all chimeric antigen receptor-engineered T cells directed against B cell malignancies. Despite encouraging clinical results, engineered T cell therapy is still constrained by challenges, which could be addressed by genome editing. As RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats technology passes its 10-year anniversary, we review emerging applications of genome editing approaches designed to (1) overcome resistance to therapy, including cancer immune evasion mechanisms; (2) avoid unwanted immune reactions related to allogeneic T cell products; (3) increase fitness, expansion capacity, persistence, and potency of engineered T cells, while preserving their safety profile; and (4) improve the ability of therapeutic cells to resist immunosuppressive signals active in the tumor microenvironment. Overall, these innovative approaches should widen the safe and effective use of ACT to larger number of patients affected by cancer.


Assuntos
Edição de Genes , Neoplasias , Estados Unidos , Humanos , Linfócitos T , Imunoterapia , Aniversários e Eventos Especiais , Linfócitos B , Neoplasias/genética , Neoplasias/terapia
10.
Cell Rep Med ; : 100978, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36933554

RESUMO

Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.

11.
Cancer Discov ; 13(7): 1636-1655, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011008

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has shown promise in treating hematologic cancers, but resistance is common and efficacy is limited in solid tumors. We found that CAR T cells autonomously propagate epigenetically programmed type I interferon signaling through chronic stimulation, which hampers antitumor function. EGR2 transcriptional regulator knockout not only blocks this type I interferon-mediated inhibitory program but also independently expands early memory CAR T cells with improved efficacy against liquid and solid tumors. The protective effect of EGR2 deletion in CAR T cells against chronic antigen-induced exhaustion can be overridden by interferon-ß exposure, suggesting that EGR2 ablation suppresses dysfunction by inhibiting type I interferon signaling. Finally, a refined EGR2 gene signature is a biomarker for type I interferon-associated CAR T cell failure and shorter patient survival. These findings connect prolonged CAR T cell activation with deleterious immunoinflammatory signaling and point to an EGR2-type I interferon axis as a therapeutically amenable biological system. SIGNIFICANCE: To improve CAR T cell therapy outcomes, modulating molecular determinants of CAR T cell-intrinsic resistance is crucial. Editing the gene encoding the EGR2 transcriptional regulator renders CAR T cells impervious to type I interferon pathway-induced dysfunction and improves memory differentiation, thereby addressing major barriers to progress for this emerging class of cancer immunotherapies. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Linfócitos T , Neoplasias/genética , Neoplasias/terapia , Imunoterapia Adotiva , Transdução de Sinais , Neoplasias Hematológicas/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteína 2 de Resposta de Crescimento Precoce/metabolismo
12.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236742

RESUMO

BACKGROUND: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. METHODS: We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. RESULTS: CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. CONCLUSION: sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.


Assuntos
Imunoterapia , Neoplasias , Animais , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Receptores do Fator de Necrose Tumoral
13.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35577501

RESUMO

Immunotherapy with gene engineered CAR and TCR transgenic T-cells is a transformative treatment in cancer medicine. There is a rich pipeline with target antigens and sophisticated technologies that will enable establishing this novel treatment not only in rare hematological malignancies, but also in common solid tumors. The T2EVOLVE consortium is a public private partnership directed at accelerating the preclinical development of and increasing access to engineered T-cell immunotherapies for cancer patients. A key ambition in T2EVOLVE is to assess the currently available preclinical models for evaluating safety and efficacy of engineered T cell therapy and developing new models and test parameters with higher predictive value for clinical safety and efficacy in order to improve and accelerate the selection of lead T-cell products for clinical translation. Here, we review existing and emerging preclinical models that permit assessing CAR and TCR signaling and antigen binding, the access and function of engineered T-cells to primary and metastatic tumor ligands, as well as the impact of endogenous factors such as the host immune system and microbiome. Collectively, this review article presents a perspective on an accelerated translational development path that is based on innovative standardized preclinical test systems for CAR and TCR transgenic T-cell products.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Neoplasias/terapia , Linfócitos T
14.
Cancer Immunol Res ; 10(4): 498-511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362043

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CAR-T19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti-CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies.


Assuntos
Leucemia , Linfócitos T , Animais , Antígenos CD19 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Recidiva
15.
Mol Ther ; 18(7): 1275-83, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20442708

RESUMO

Successful virotherapy requires efficient virus spread within tumors. We tested whether the expression of hyaluronidase, an enzyme which dissociates the extracellular matrix (ECM), could enhance the intratumoral distribution of an oncolytic adenovirus and improve its therapeutic activity. As a proof of concept, we demonstrated that intratumoral coadministration of hyaluronidase in mice-bearing tumor xenografts improves the antitumor activity of an oncolytic adenovirus. Next, we constructed a replication-competent adenovirus expressing a soluble form of the human sperm hyaluronidase (PH20) under the control of the major late promoter (MLP) (AdwtRGD-PH20). Intratumoral treatment of human melanoma xenografts with AdwtRGD-PH20 resulted in degradation of hyaluronan (HA), enhanced viral distribution, and induced tumor regression in all treated tumors. Finally, the PH20 cDNA was inserted in an oncolytic adenovirus that selectively kills pRb pathway-defective tumor cells. The antitumoral activity of the novel oncolytic adenovirus expressing PH20 (ICOVIR17) was compared to that of the parental virus ICOVIR15. ICOVIR17 showed more antitumor efficacy following intratumoral and systemic administration in mice with prestablished tumors, along with an improved spread of the virus within the tumor. Importantly, a single intravenous dose of ICOVIR17 induced tumor regression in 60% of treated tumors. These results indicate that ICOVIR17 is a promising candidate for clinical testing.


Assuntos
Adenoviridae/fisiologia , Regulação Enzimológica da Expressão Gênica , Hialuronoglucosaminidase/metabolismo , Adenoviridae/genética , Animais , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Feminino , Humanos , Hialuronoglucosaminidase/genética , Imuno-Histoquímica , Masculino , Melanoma/terapia , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Terapia Viral Oncolítica , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Ther ; 18(5): 903-11, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20179683

RESUMO

The therapeutic potential of oncolytic adenoviruses is limited by the rate of adenovirus release. Based on the observation that several viruses induce cell death and progeny release by disrupting intracellular calcium homeostasis, we hypothesized that the alteration in intracellular calcium concentration induced by verapamil could improve the rate of virus release and spread, eventually enhancing the antitumoral activity of oncolytic adenoviruses. Our results indicate that verapamil substantially enhanced the release of adenovirus from a variety of cell types resulting in an improved cell-to-cell spread and cytotoxicity. Furthermore, the combination of the systemic administration of an oncolytic adenovirus (ICOVIR-5) with verapamil in vivo greatly improved its antitumoral activity in two different tumor xenograft models without affecting the selectivity of this virus. Overall, our findings indicate that verapamil provides a new, safe, and versatile way to improve the antitumoral potency of oncolytic adenoviruses in the clinical setting.


Assuntos
Adenoviridae/fisiologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Verapamil/uso terapêutico , Adenoviridae/efeitos dos fármacos , Adenoviridae/genética , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Vetores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/genética , Liberação de Vírus/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther ; 18(11): 1960-71, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20808288

RESUMO

Oncolytic adenoviruses are promising anticancer agents due to their ability to self-amplify at the tumor mass. However, tumor stroma imposes barriers difficult to overcome by these agents. Transgene expression is a valuable strategy to counteract these limitations and to enhance antitumor activity. For this purpose, the genetic backbone in which the transgene is inserted should be optimized to render transgene expression compatible with the adenovirus replication cycle and to keep genome size within the encapsidation size limit. In order to design a potent and selective oncolytic adenovirus that keeps intact all the viral functions with minimal increase in genome size, we inserted palindromic E2F-binding sites into the endogenous E1A promoter. The insertion of these sites controlling E1A-Δ24 results in a low systemic toxicity profile in mice. Importantly, the E2F-binding sites also increased the cytotoxicity and the systemic antitumor activity relative to wild-type adenovirus in all cancer models tested. The low toxicity and the increased potency results in improved antitumor efficacy after systemic injection and increased survival of mice carrying tumors. Furthermore, the constrained genome size of this backbone allows an efficient and potent expression of transgenes, indicating that this virus holds promise for overcoming the limitations of oncolytic adenoviral therapy.


Assuntos
Adenoviridae/genética , Proteínas E1A de Adenovirus/genética , Terapia Genética , Neoplasias/terapia , Vírus Oncolíticos/fisiologia , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/fisiologia , Proteínas E1A de Adenovirus/metabolismo , Animais , Western Blotting , Efeito Citopatogênico Viral , Fator de Transcrição E2F1/metabolismo , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transgenes/fisiologia , Células Tumorais Cultivadas , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Hum Gene Ther ; 32(19-20): 1044-1058, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662233

RESUMO

T cell modification with genes that encode chimeric antigen receptors (CAR-T cells) has shown tremendous promise for the treatment of B cell malignancies. The successful translation of CAR-T cell therapy to other tumor types, including solid tumors, is the next big challenge. As the field advances from second- to next-generation CAR-T cells comprising multiple genetic modifications, more sophisticated methods and tools to engineer T cells are being developed. Viral vectors, especially γ-retroviruses and lentiviruses, are traditionally used for CAR-T cell engineering due to their high transduction efficiency. However, limited genetic cargo, high costs of production under good manufacturing practice (GMP) conditions, and the high regulatory demands are obstacles for widespread clinical translation. To overcome these limitations, different nonviral approaches are being explored at a preclinical or clinical level, including transposon/transposase systems and mRNA electroporation and nonintegrating DNA nanovectors. Genome editing tools that allow efficient knockout of particular genes and/or site-directed integration of the CAR and/or other transgenes into the genome are also being evaluated for CAR-T cell engineering. In this review, we discuss the development of viral and nonviral vectors used to generate CAR-T cells, focusing on their advantages and limitations. We also discuss the lessons learned from clinical trials using the different genetic engineering tools, with special focus on safety and efficacy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Engenharia Genética , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
19.
Methods Mol Biol ; 2086: 223-236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707680

RESUMO

CARs are synthetic receptors designed to drive antigen-specific activation upon binding of the scFv to its cognate antigen. However, CARs can also elicit different levels of ligand-independent constitutive signaling, also known as tonic signaling. Chronic T cell activation is observed in certain combinations of scFv, hinge, and costimulatory domains and may be increased due to high levels of CAR expression. Tonic signaling can be identified during primary T cell expansion due to differences in the phenotype and growth of CAR-T cells compared to control T cells. CARs displaying tonic signaling are associated with accelerated T cell differentiation and exhaustion and impaired antitumor effects. Selecting CARs which configuration does not induce tonic signaling is important to enhance antigen-specific T cell responses. In this chapter, we describe in detail different protocols to identify tonic signaling driven by CARs during primary T cell ex vivo expansion.


Assuntos
Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Apoptose , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Convulsões , Linfócitos T/imunologia
20.
Methods Mol Biol ; 2086: 251-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707682

RESUMO

Animal models provide an essential tool to study the efficacy of CAR-T cell treatments. Most of the current works test human CAR-T cells in immunodeficient animals, typically NOD Scid Gamma (NSG) mice transplanted with human tumors. Despite the limitations of this model, including the difficulty to study the interaction between CAR-T cells and the human innate system and to assess the toxicity of this therapy, NSG are extensively used for adoptive T cell transfer studies. In this chapter, we will describe the protocols to test CAR-T cells in NSG animals with solid tumors. We first describe the implantation of human xenograft tumors in NSG animals, followed by CAR-T cell administration and assessment of antitumor responses. We will also review the protocols to analyze T cell persistence in the blood of treated animals. Finally, we will focus on the analysis of the tumors at the end point of the experiment, including the percentage, phenotype, and function of tumor infiltrating T cells, and loss of antigen expression.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imunofenotipagem , Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento , Ultrassonografia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA