Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 95(4): 1117-1123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086952

RESUMO

BACKGROUND: Insulin might be associated with changes in infant gastrointestinal microbiota. The objective of this randomized controlled trial was to assess the efficacy of two doses of recombinant human(rh) enteral insulin administration compared to placebo in intestinal microbiota. METHODS: 19 preterm patients were recruited at the NICU of La Paz University Hospital (Madrid, Spain). Subjects received 2000 µIU of rh enteral insulin/ml(n = 8), 400 µIU of rh enteral insulin/ml(n = 6) or placebo(n = 5) for 28 days administered once per day. Extracted DNA from fecal samples collected at the beginning and end of treatment were analyzed. The 16S rRNA V4 region was amplified and sequenced in a Miseq(Illumina®) sequencer using 2 × 250 bp paired end. Resulting reads were filtered and analyzed using Qiime2 software. Metabolic activity was assessed by GC. RESULTS: Gestational age and birth weight did not differ between groups. At the phylum level, both insulin treated groups increased the relative abundance of Bacillota, while Pseudomonadota decreased. No change was observed in infants receiving placebo. At the genus level, insulin at both doses showed enriching effects on Clostridium. We found a significant increase in concentrations of fecal propionate in both rh insulin treated groups. CONCLUSION: Rh insulin may modify neonatal intestinal microbiota and SCFAs in preterm infants. IMPACT STATEMENT: Decrease of Pseudomonadota (former Proteobacteria phylum) and increase of Bacillota (former Firmicutes phylum) obtained in this study are the changes observed previously in low-risk infants for NEC. The administration of recombinant enteral insulin may modify the microbiota of preterm new-borns and SCFAs. Modulation of the microbiota may be a mechanism whereby insulin contributes to neonatal intestinal maturation and/or protection.


Assuntos
Enterocolite Necrosante , Microbioma Gastrointestinal , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Insulina , RNA Ribossômico 16S/genética , Intestinos , Enterocolite Necrosante/prevenção & controle
2.
Adv Exp Med Biol ; 1435: 101-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175473

RESUMO

Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile, and in fact, the occurrence of C. difficile-associated infections (CDI) is increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii, have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studies conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Probióticos , Humanos , Probióticos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle , Antibacterianos/uso terapêutico , Disbiose/prevenção & controle , Saccharomyces cerevisiae
3.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256076

RESUMO

The imbalance of the gut microbiota (GM) is known as dysbiosis and is associated with disorders such as obesity. The increasing prevalence of microorganisms harboring antibiotic resistance genes (ARG) in the GM has been reported as a potential risk for spreading multi-drug-resistant pathogens. The objective of this work was the evaluation, in a fecal culture model, of different probiotics for their ability to modulate GM composition and ARG levels on two population groups, extremely obese (OB) and normal-weight (NW) subjects. Clear differences in the basal microbiota composition were observed between NW and OB donors. The microbial profile assessed by metataxonomics revealed the broader impact of probiotics on the OB microbiota composition. Also, supplementation with probiotics promoted significant reductions in the absolute levels of tetM and tetO genes. Regarding the blaTEM gene, a minor but significant decrease in both donor groups was detected after probiotic addition. A negative association between the abundance of Bifidobacteriaceae and the tetM gene was observed. Our results show the ability of some of the tested strains to modulate GM. Moreover, the results suggest the potential application of probiotics for reducing the levels of ARG, which constitutes an interesting target for the future development of probiotics.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos , Microbiota/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Obesidade
4.
Stroke ; 54(7): 1875-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226775

RESUMO

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B , Bactérias/genética , Acidente Vascular Cerebral/complicações , Pulmão
5.
Biogerontology ; 23(1): 35-52, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34729669

RESUMO

The ingestion of certain probiotics has been suggested as a promising nutritional strategy to improve aging. The objective of this work was to evaluate the effects of the daily intake, for a month, of a new probiotic Akkermansia muciniphila (AKK) (2 × 108 cfu/100µL PBS) on behavior, as well as function and redox state of immune cells of old female ICR-CD1 mice (OA group). For this, several behavioral tests were performed, and function and oxidative-inflammatory stress parameters of peritoneal leukocytes were analyzed in OA group, in a group of the same age that did not take AKK (old control, OC group) and in another adult control (AC) group. The results showed, in OA group, a significant improvement of several behavioral responses (coordination, balance, neuromuscular vigor, exploratory ability and anxiety like-behaviors), as well as in immune functions (chemotaxis, phagocytosis, NK activity and lymphoproliferation) and in oxidative stress parameters (glutathione peroxidase and reductase activities, oxidized glutathione and lipid oxidation concentrations) of the peritoneal leukocytes in comparison to those observed in OC group. In addition, peritoneal immune cells from the OA group released lower basal concentrations of pro-inflammatory cytokines (IL-2, IL-6 and TNF-α) compared to those from the OC group. The values of parameters in OA were similar to those in AC group. These improvements in the old mice receiving the probiotic were reflected in an increase in their lifespan. In conclusion, our data indicate that AKK supplementation for a short period could be a good nutritional strategy to promote healthy longevity.


Assuntos
Akkermansia , Envelhecimento Saudável , Animais , Ingestão de Alimentos , Feminino , Longevidade , Camundongos , Camundongos Endogâmicos ICR
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408972

RESUMO

Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. The increased production of reactive oxygen species (ROS) has been associated with mitochondrial dysfunction, altered metal homeostasis, and compromised brain antioxidant defence. All these changes have been reported to directly affect synaptic activity and neurotransmission in neurons, leading to cognitive dysfunction. In this context two non-invasive strategies could be employed in an attempt to improve the aforementioned stressful brain status. In this regard, it has been shown that exercise could increase the resistance against oxidative stress, thus providing enhanced neuroprotection. Indeed, there is evidence suggesting that regular physical exercise diminishes BBB permeability as it reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. However, the differential effects of different types of exercise (aerobic exhausted exercise, anaerobic exercise, or the combination of both types) and the duration of physical activity will be also addressed in this review as likely determinants of therapeutic efficacy. The second proposed strategy is related to the use of probiotics, which can also reduce some biomarkers of oxidative stress and inflammatory cytokines, although their underlying mechanisms of action remain unclear. Moreover, various probiotics produce neuroactive molecules that directly or indirectly impact signalling in the brain. In this review, we will discuss how physical activity can be incorporated as a component of therapeutic strategies in oxidative stress-based neurological disorders along with the augmentation of probiotics intake.


Assuntos
Exercício Físico , Probióticos , Antioxidantes/farmacologia , Encéfalo , Exercício Físico/fisiologia , Estresse Oxidativo , Probióticos/uso terapêutico
7.
Eur J Nutr ; 60(3): 1403-1413, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32719985

RESUMO

PURPOSE: Solid evidence has emerged supporting the role of polyphenols and fibers as gut microbiota modulators. These studies have been limited to the data available in food composition databases, which did not include the food content of non-extractable polyphenols (NEPP). The main objective of this work is to quantify the intake of the different types of dietary polyphenols including NEPP and to evaluate their impact on the composition and activity of the intestinal microbiota. METHODS: Cross-sectional descriptive study conducted on a sample of 147 adults with no declared pathologies. Dietary intake has been registered by a semi-quantitative Food Frequency Questionnaire (FFQ) and transformed into extractable (EPP) and NEPP, and dietary fibers based on available databases. Major phylogenetic types of the intestinal microbiota were determined by qPCR and fecal SCFA quantification was performed by gas chromatography. RESULTS: NEPP account for two-thirds of the total polyphenols intake. A combined analysis by stepwise regression model including all dietary fiber and (poly)phenols has identified hydrolysable (poly)phenol (HPP) intake, as the best predictor of Bacteroides-Prevotella-Porphyromonas group and Bifidobacterium levels in feces. Also, HPPs were positively associated with butyric acid, while insoluble fiber was identified as a predictor of propionic acid in feces. CONCLUSION: The intake of macromolecular (poly)phenols could contribute to modulate the gut microbiota by increasing the levels of certain intestinal microorganisms with proven health benefits.


Assuntos
Microbiota , Polifenóis , Antioxidantes , Estudos Transversais , Dieta , Fezes/química , Filogenia , Polifenóis/análise
8.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806135

RESUMO

The establishment of the gut microbiota poses implications for short and long-term health. Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent metagenomic studies have shown that different factors, such as gestational age, delivery mode, or feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their impact on the specific bifidobacterial populations is not yet well understood. Here we studied the impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA-23S rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species were determined by q-PCR. Our results showed that the bifidobacterial population establishment is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative and quantitative changes. These data underline the need for understanding the impact of perinatal factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial populations such as Bifidobacterium. The data obtained provide indications for the selection of the species best suited for the development of bifidobacteria-based products for different groups of neonates and will help to develop rational strategies for favoring a healthy early microbiota development when this process is challenged.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal , Ciências da Nutrição Infantil , DNA Intergênico/genética , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Temperatura
9.
Gastroenterol Hepatol ; 44(7): 519-535, 2021.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-33652061

RESUMO

The human body is populated by myriads of microorganisms throughout its surface and in the cavities connected to the outside. The microbial colonisers of the intestine (microbiota) are a functional and non-expendable part of the human organism: they provide genes (microbiome) and additional functions to the resources of our species and participate in multiple physiological processes (somatic development, nutrition, immunity, etc.). Some chronic non-communicable diseases of developed society (atopias, metabolic syndrome, inflammatory diseases, cancer and some behaviour disorders) are associated with dysbiosis: loss of species richness in the intestinal microbiota and deviation from the ancestral microbial environment. Changes in the vertical transmission of the microbiome, the use of antiseptics and antibiotics, and dietary habits in industrialised society appear to be at the origin of dysbiosis. Generating and maintaining diversity in the microbiota is a new clinical target for health promotion and disease prevention.


Assuntos
Microbioma Gastrointestinal/fisiologia , Humanos , Sistema Imunitário/fisiologia , Sistemas Neurossecretores/fisiologia
10.
Curr Issues Mol Biol ; 36: 33-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31558686

RESUMO

The microbial community inhabiting our intestine, known as 'microbiota', and the ensemble of their genomes (microbiome) regulate important functions of the host, being essential for health maintenance. The recent development of next-generation sequencing (NGS) methods has greatly facilitated the study of the microbiota and has contributed to evidence of the strong influence exerted by age and diet. However, the precise way in which the diet and its components modify the functionality of the intestinal microbiome is far from being completely known. Changes in the intestinal microbiota occur during ageing, frequently accompanied by physiological changes of the digestive tract, modification of dietary patterns and impairment of the immune system. Establishing nutritional strategies aiming to counterbalance the specific alterations taking place in the microbiota during ageing would contribute to improved health status in the elderly. This review will analyse changes appearing in the intestinal microbiota from adulthood to old age and their association with dietary patterns and lifestyle factors.


Assuntos
Envelhecimento , Dieta , Microbioma Gastrointestinal , Adulto , Idoso , Envelhecimento/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/fisiopatologia , Dieta/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Metabolômica , Microbiota/genética , Microbiota/imunologia , Microbiota/fisiologia
11.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019174

RESUMO

The gut microbiota remains relatively stable during adulthood; however, certain intrinsic and environmental factors can lead to microbiota dysbiosis. Its restoration towards a healthy condition using best-suited prebiotics requires previous development of in vitro models for evaluating their functionality. Herein, we carried out fecal cultures with microbiota from healthy normal-weight and morbid obese adults. Cultures were supplemented with different inulin-type fructans (1-kestose, Actilight, P95, Synergy1 and Inulin) and a galactooligosaccharide. Their impact on the gut microbiota was assessed by monitoring gas production and evaluating changes in the microbiota composition (qPCR and 16S rRNA gene profiling) and metabolic activity (gas chromatography). Additionally, the effect on the bifidobacterial species was assessed (ITS-sequencing). Moreover, the functionality of the microbiota before and after prebiotic-modulation was determined in an in vitro model of interaction with an intestinal cell line. In general, 1-kestose was the compound showing the largest effects. The modulation with prebiotics led to significant increases in the Bacteroides group and Faecalibacterium in obese subjects, whereas in normal-weight individuals, substantial rises in Bifidobacterium and Faecalibacterium were appreciated. Notably, the results obtained showed differences in the responses among the tested compounds but also among the studied human populations, indicating the need for developing population-specific products.


Assuntos
Bactérias/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Obesidade Mórbida/tratamento farmacológico , Prebióticos/administração & dosagem , Magreza/tratamento farmacológico , Adulto , Bactérias/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Magreza/metabolismo , Magreza/patologia
12.
Cell Mol Life Sci ; 75(1): 83-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988290

RESUMO

The colonization of the neonatal digestive tract provides a microbial stimulus required for an adequate maturation towards the physiological homeostasis of the host. This colonization, which is affected by several factors, begins with facultative anaerobes and continues with anaerobic genera. Accumulating evidence underlines the key role of the early neonatal period for this microbiota-induced maturation, being a key determinant factor for later health. Therefore, understanding the factors that determine the establishment of the microbiota in the infant is of critical importance. Exposure to antibiotics, either prenatally or postnatally, is common in early life mainly due to the use of intrapartum prophylaxis or to the administration of antibiotics in C-section deliveries. However, we are still far from understanding the impact of early antibiotics and their long-term effects. Increased risk of non-communicable diseases, such as allergies or obesity, has been observed in individuals exposed to antibiotics during early infancy. Moreover, the impact of antibiotics on the establishment of the infant gut resistome, and on the role of the microbiota as a reservoir of resistance genes, should be evaluated in the context of the problems associated with the increasing number of antibiotic resistant pathogenic strains. In this article, we review and discuss the above-mentioned issues with the aim of encouraging debate on the actions needed for understanding the impact of early life antibiotics upon human microbiota and health and for developing strategies aimed at minimizing this impact.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Humanos , Interações Microbianas/efeitos dos fármacos , Fatores de Tempo
13.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847466

RESUMO

The effects of specific foods, such as products containing probiotics or prebiotics, on human health and the role of intestinal microbiota in this interaction have been a subject of scientific interest for several decades [...].


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Microbiota/fisiologia , Animais , Alimentos , Trato Gastrointestinal/metabolismo , Humanos , Prebióticos/administração & dosagem , Probióticos/administração & dosagem
14.
Eur J Nutr ; 57(2): 487-497, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27744545

RESUMO

PURPOSE: Short-chain fatty acids (SCFAs) formation by intestinal bacteria is regulated by many different factors, among which dietary fibre is currently receiving most attention. However, since fibre-rich foods are usually good dietary sources of phenolic compounds, which are also known to affect the microbiota, authors hypothesize that the regular intake of these bioactive compounds could be associated with a modulation of faecal SCFA production by the intestinal microbiota. METHODS: In this work, food intake was recorded by means of a validated Food Frequency Questionnaire. Fibres were determined using Marlett food composition tables, and phenolic compounds were obtained from Phenol-Explorer Database. Analysis of SCFA was performed by gas chromatography-flame ionization/mass spectrometry and quantification of microbial populations in faeces by quantitative PCR. RESULTS: Klason lignin and its food contributors, as predictors of faecal butyrate production, were directly associated with Bacteroides and Bifidobacterium levels, as well as lignans with Bacteroides. Also, anthocyanidins, provided by strawberries, were associated with faecal propionate and inversely related to Lactobacillus group. CONCLUSIONS: These results support the hypothesis we put forward regarding the association between some vegetable foods (strawberries, pasta, lentils, lettuce and olive oil) and faecal SCFA. More studies are needed in order to elucidate whether these associations have been mediated by the bacterial modulatory effect of the bioactive compounds, anthocyanins, lignans or Klason lignin, present in foodstuffs.


Assuntos
Bacteroides/metabolismo , Bifidobacterium/metabolismo , Dieta Saudável , Fibras na Dieta/uso terapêutico , Disbiose/prevenção & controle , Microbioma Gastrointestinal , Cooperação do Paciente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteroides/classificação , Bacteroides/crescimento & desenvolvimento , Bacteroides/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Estudos Transversais , Dieta/efeitos adversos , Dieta/etnologia , Dieta Saudável/etnologia , Fibras na Dieta/metabolismo , Disbiose/etnologia , Disbiose/etiologia , Disbiose/microbiologia , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Fermentação , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Avaliação Nutricional , Inquéritos Nutricionais , Cooperação do Paciente/etnologia , Espanha , Adulto Jovem
15.
Can J Microbiol ; 64(3): 215-221, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29298396

RESUMO

Mechanistic features that characterize the interaction and inhibition of the food-borne pathogen Listeria monocytogenes by members of the genus Bifidobacterium still remain unclear. In the present work, we tried to shed light on the influence that co-cultivation of L. monocytogenes with Bifidobacterium breve may exert on both microorganisms and on virulence of the pathogen. Production of acetate and lactate was measured by gas chromatography and high-performance liquid chromatography, respectively; bacterial counts were obtained by plate count; gene expression was determined by RT-qPCR; and haemolytic activity was analyzed against goat erythrocytes. We found slightly but significantly lower final counts of Listeria and Bifidobacterium (p < 0.05) and lower haemolytic efficiency in L. monocytogenes cells from cocultures than in those from monocultures. In contrast, the hly and luxS genes, which code for the cytolysin listeriolysin O and participate in biofilm formation, respectively, were overexpressed when L. monocytogenes was grown in coculture. This indicates that the presence of Bifidobacterium is able to modify the gene expression and haemolytic activity of L. monocytogenes when both microorganisms grow together.


Assuntos
Bifidobacterium breve/fisiologia , Listeria monocytogenes/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Hemólise , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Interações Microbianas , Virulência/genética , Fatores de Virulência/genética
16.
Adv Exp Med Biol ; 1050: 161-176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29383669

RESUMO

Probiotics have been claimed as a valuable tool to restore the balance in the intestinal microbiota following a dysbiosis caused by, among other factors, antibiotic therapy. This perturbed environment could favor the overgrowth of Clostridium difficile and, in fact, the occurrence of C. difficile-associated infections (CDI) is being increasing in recent years. In spite of the high number of probiotics able to in vitro inhibit the growth and/or toxicity of this pathogen, its application for treatment or prevention of CDI is still scarce since there are not enough well-defined clinical studies supporting efficacy. Only a few strains, such as Lactobacillus rhamnosus GG and Saccharomyces boulardii have been studied in more extent. The increasing knowledge about the probiotic mechanisms of action against C. difficile, some of them reviewed here, makes promising the application of these live biotherapeutic agents against CDI. Nevertheless, more effort must be paid to standardize the clinical studied conducted to evaluate probiotic products, in combination with antibiotics, in order to select the best candidate for C. difficile infections.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/tratamento farmacológico , Probióticos/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Modelos Biológicos , Resultado do Tratamento
17.
BMC Microbiol ; 16(1): 150, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418149

RESUMO

BACKGROUND: Bacteroides fragilis is the most frequent species at the human intestinal mucosal surface, it contributes to the maturation of the immune system although is also considered as an opportunistic pathogen. Some Bifidobacterium strains produce exopolysaccharides (EPS), complex carbohydrate polymers that promote changes in the metabolism of B. fragilis when this microorganism grows in their presence. To demonstrate that B. fragilis can use EPS from bifidobacteria as fermentable substrates, purified EPS fractions from two strains, Bifidobacterium longum E44 and Bifidobacterium animalis subsp. lactis R1, were added as the sole carbon source in cultures of B. fragilis DSMZ 2151 in a minimal medium. Bacterial counts were determined during incubation and the evolution of organic acids, short chain fatty acids (SCFA) and evolution of EPS fractions was analysed by chromatography. RESULTS: Growth of B. fragilis at early stages of incubation was slower in EPS than with glucose, microbial levels remaining higher in EPS at prolonged incubation times. A shift in metabolite production by B. fragilis occurred from early to late stages of growth, leading to the increase in the production of propionate and acetate whereas decrease lactate formation. The amount of the two peaks with different molar mass of the EPS E44 clearly decreased along incubation whereas a consumption of the polymer R1 was not so evident. CONCLUSIONS: This report demonstrates that B. fragilis can consume some EPS from bifidobacteria, with a concomitant release of SCFA and organic acids, suggesting a role for these biopolymers in bacteria-bacteria cross-talk within the intestine.


Assuntos
Bacteroides fragilis/metabolismo , Bifidobacterium/metabolismo , Polissacarídeos Bacterianos/metabolismo , Acetatos/metabolismo , Adulto , Carga Bacteriana , Bacteroides fragilis/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Carbono/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Ácido Láctico/metabolismo , Interações Microbianas , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Propionatos/metabolismo
18.
Crit Rev Food Sci Nutr ; 56(9): 1440-53, 2016 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25675369

RESUMO

The functional food market, including products formulated to maintain a "healthy" gut microbiota, i.e. probiotics and prebiotics, has increased enormously since the end of the last century. In order to favor the competitiveness of this sector, as well as to increase our knowledge of the mechanisms of action upon human health, new probiotic strains and prebiotic substrates are being studied. This review discusses the use of exopolysaccharides (EPS), both homopolysaccharides (HoPS) and heteropolysaccharides (HePS), synthesized by lactic acid bacteria and bifidobacteria as potential prebiotics. These extracellular carbohydrate polymers synthesized by some gut inhabitants seem to be resistant to gastrointestinal digestion; these are susceptible as well to biodegradability by the intestinal microbiota depending on both the physicochemical characteristics of EPS and the pool of glycolytic enzymes harbored by microbiota. Therefore, although the chemical composition of these HoPS and HePS is different, both can be fermentable substrates by intestinal inhabitants and good candidates as prebiotic substrates. However, there are limitations for their use as additives in the food industry due to, on the one hand, their low production yield and, on the other hand, a lack of clinical studies demonstrating the functionality of these biopolymers.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal/fisiologia , Lactobacillus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Prebióticos , Fermentação , Aditivos Alimentares , Humanos , Intestinos/microbiologia , Polissacarídeos Bacterianos/biossíntese , Probióticos
19.
J Pediatr Gastroenterol Nutr ; 63(6): e193-e203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27019409

RESUMO

Microbial communities inhabiting the human host play important roles in maintaining health status, including reproduction and early life programming, which is particularly important in the context of preterm neonates' health. Preterm birth (PTB) is often the result of a microbial dysbiosis or infection. In addition, preterm neonates experience different levels of organ immaturity and an abnormal gut microbiota establishment, as compared to full-term neonates. This exacerbates their developmental problems and can have negative consequences at systemic level. In addition, preterm babies are commonly exposed to delayed enteral feeding and hospital environments, which increases the risk of short- and long-term health problems. Some of these clinical conditions, such as necrotizing enterocolitis or sepsis, may be life threatening, whereas others may translate into life-long conditions, including cognitive problems. Increasing scientific interest has focused on understanding developmental problems in preterm neonates related to abnormalities in the settlement of their microbial communities, with the final goal of selecting appropriate microbiome-targeted strategies (eg, probiotics), to reduce preterm health risks and improve overall quality of life.This review aims to summarize current knowledge on microbiological factors influencing PTB initiation and gastrointestinal development, and on the health consequences to the preterm neonate. Scientific evidences on dietary strategies reducing PTB incidence and minimizing sequelae in this particularly sensitive human group subpopulation are also discussed.


Assuntos
Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Recém-Nascido Prematuro/imunologia , Nascimento Prematuro/microbiologia , Feminino , Trato Gastrointestinal/imunologia , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Doenças do Prematuro , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/prevenção & controle , Probióticos/uso terapêutico , Fatores de Risco
20.
Can J Microbiol ; 62(7): 623-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27156738

RESUMO

A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.


Assuntos
Bacteroides fragilis/fisiologia , Bifidobacterium longum/fisiologia , Técnicas de Cocultura , Humanos , Intestinos/microbiologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA