RESUMO
Successful regeneration of missing tissues requires seamless integration of positional information along the body axes. Planarians, which regenerate from almost any injury, use conserved, developmentally important signaling pathways to pattern the body axes. However, the molecular mechanisms which facilitate cross talk between these signaling pathways to integrate positional information remain poorly understood. Here, we report a p21-activated kinase (smed-pak1) which functionally integrates the anterior-posterior (AP) and the medio-lateral (ML) axes. pak1 inhibits WNT/ß-catenin signaling along the AP axis and, functions synergistically with the ß-catenin-independent WNT signaling of the ML axis. Furthermore, this functional integration is dependent on warts and merlin-the components of the Hippo/Yorkie (YKI) pathway. Hippo/YKI pathway is a critical regulator of body size in flies and mice, but our data suggest the pathway regulates body axes patterning in planarians. Our study provides a signaling network integrating positional information which can mediate coordinated growth and patterning during planarian regeneration.
Assuntos
Planárias , Via de Sinalização Wnt , Quinases Ativadas por p21 , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Planárias/fisiologia , Planárias/genética , Planárias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração , Transativadores/metabolismo , Transativadores/genéticaRESUMO
Planarian flatworms are best known for their impressive regenerative capacity, yet this trait varies across species. In addition, planarians have other features that share morphology and function with the tissues of many other animals, including an outer mucociliary epithelium that drives planarian locomotion and is very similar to the epithelial linings of the human lung and oviduct. Planarians occupy a broad range of ecological habitats and are known to be sensitive to changes in their environment. Yet, despite their potential to provide valuable insight to many different fields, very few planarian species have been developed as laboratory models for mechanism-based research. Here we describe a previously undocumented planarian isolate, Girardia sp. (Guanajuato). After collecting this isolate from a freshwater habitat in central Mexico, we characterized it at the morphological, cellular, and molecular level. We show that Girardia sp. (Guanajuato) not only shares features with animals in the Girardia genus but also possesses traits that appear unique to this isolate. By thoroughly characterizing this new planarian isolate, our work facilitates future comparisons to other flatworms and further molecular dissection of the unique and physiologically-relevant traits observed in this Girardia sp. (Guanajuato) isolate.
Assuntos
Planárias , Animais , Ecossistema , Humanos , México , Planárias/genéticaRESUMO
The extracellular matrix (ECM) is a three-dimensional network of macromolecules that provides a microenvironment capable of supporting and regulating cell functions. However, only a few research organisms are available for the systematic dissection of the composition and functions of the ECM, particularly during regeneration. We utilized the free-living flatworm Schmidtea mediterranea to develop an integrative approach consisting of decellularization, proteomics, and RNAi to characterize and investigate ECM functions during tissue homeostasis and regeneration. ECM-enriched samples were isolated from planarians, and their proteomes were characterized by LC-MS/MS. The functions of identified ECM components were interrogated using RNA interference. Using this approach, we found that heparan sulfate proteoglycan is essential for tissue regeneration. Our strategy provides an experimental approach for identifying both known and novel ECM components involved in regeneration.
Assuntos
Matriz Extracelular Descelularizada , Planárias , Regeneração , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteoglicanas de Heparan Sulfato , Homeostase , Planárias/genética , Planárias/metabolismo , Planárias/fisiologia , Proteoma , Interferência de RNARESUMO
BACKGROUND: The ability to efficiently visualize and manipulate chromosomes is fundamental to understanding the genome architecture of organisms. Conventional chromosome preparation protocols developed for mammalian cells and those relying on species-specific conditions are not suitable for many invertebrates. Hence, a simple and inexpensive chromosome preparation protocol, adaptable to multiple invertebrate species, is needed. RESULTS: We optimized a chromosome preparation protocol and applied it to several planarian species (phylum Platyhelminthes), the freshwater apple snail Pomacea canaliculata (phylum Mollusca), and the starlet sea anemone Nematostella vectensis (phylum Cnidaria). We demonstrated that both mitotically active adult tissues and embryos can be used as sources of metaphase chromosomes, expanding the potential use of this technique to invertebrates lacking cell lines and/or with limited access to the complete life cycle. Simple hypotonic treatment with deionized water was sufficient for karyotyping; growing cells in culture was not necessary. The obtained karyotypes allowed the identification of differences in ploidy and chromosome architecture among otherwise morphologically indistinguishable organisms, as in the case of a mixed population of planarians collected in the wild. Furthermore, we showed that in all tested organisms representing three different phyla this protocol could be effectively coupled with downstream applications, such as chromosome fluorescent in situ hybridization. CONCLUSIONS: Our simple and inexpensive chromosome preparation protocol can be readily adapted to new invertebrate research organisms to accelerate the discovery of novel genomic patterns across the branches of the tree of life.
Assuntos
Cromossomos/genética , Cariotipagem/métodos , Planárias/genética , Anêmonas-do-Mar/genética , Caramujos/genética , Animais , Cromossomos/química , Embrião não Mamífero/química , Embrião não Mamífero/fisiologia , Invertebrados , Moluscos/química , Moluscos/genética , Planárias/química , Platelmintos/química , Platelmintos/genética , Anêmonas-do-Mar/química , Caramujos/químicaRESUMO
The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.
Assuntos
Adenosina/análogos & derivados , Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Cirrose Hepática Experimental/tratamento farmacológico , Adenosina/farmacologia , Animais , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos WistarRESUMO
Exploiting the conservation of various features of mitochondrial genomes has been instrumental in resolving phylogenetic relationships. Despite extensive sequence evidence, it has not previously been possible to conclusively resolve some key aspects of flatworm mitochondrial genomes, including generally conserved traits, such as start codons, noncoding regions, the full complement of tRNAs, and whether ATP8 is, or is not, encoded by this extranuclear genome. In an effort to address these difficulties, we sought to determine the mitochondrial transcriptomes and genomes of sexual and asexual taxa of freshwater triclads, a group previously poorly represented in flatworm mitogenomic studies. We have discovered evidence for an alternative start codon, an extended cox1 gene, a previously undescribed conserved open reading frame, long noncoding RNAs, and a highly conserved gene order across the large evolutionary distances represented within the triclads. Our findings contribute to the expansion and refinement of mitogenomics to address evolutionary issues in this diverse group of animals.