RESUMO
Iron is an essential nutrient that regulates productivity in ~30% of the ocean. Compared with deep (>2000 meter) hydrothermal activity at mid-ocean ridges that provide iron to the ocean's interior, shallow (<500 meter) hydrothermal fluids are likely to influence the surface's ecosystem. However, their effect is unknown. In this work, we show that fluids emitted along the Tonga volcanic arc (South Pacific) have a substantial impact on iron concentrations in the photic layer through vertical diffusion. This enrichment stimulates biological activity, resulting in an extensive patch of chlorophyll (360,000 square kilometers). Diazotroph activity is two to eight times higher and carbon export fluxes are two to three times higher in iron-enriched waters than in adjacent unfertilized waters. Such findings reveal a previously undescribed mechanism of natural iron fertilization in the ocean that fuels regional hotspot sinks for atmospheric CO2.
Assuntos
Dióxido de Carbono , Ferro , Fixação de Nitrogênio , Fitoplâncton , Água do Mar , Ecossistema , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Ciclo do Carbono , Dióxido de Carbono/metabolismoRESUMO
The unicellular diazotrophic cyanobacterium Crocosphaera contributes significantly to fixed nitrogen inputs in the oligotrophic ocean. In the western tropical South Pacific Ocean (WTSP), these diazotrophs abound thanks to the phosphorus-rich waters provided by the South Equatorial Current, and iron provided aeolian and subsurface volcanic activity. East of the WTSP, the South Pacific Gyre (SPG) harbors the most oligotrophic and transparent waters of the world's oceans, where only heterotrophic diazotrophs have been reported before. Here, in the SPG, we detected unexpected accumulation of Crocosphaera at 50 m with peak abundances of 5.26 × 105 nifH gene copies l-1. The abundance of Crocosphaera at 50 m was in the same order of magnitude as those detected westwards in the WTSP and represented 100% of volumetric N2 fixation rates. This accumulation at 50 m was likely due to a deeper penetration of UV light in the clear waters of the SPG being detrimental for Crocosphaera growth and N2 fixation activity. Nutrient and trace metal addition experiments did not induce any significant changes in N2 fixation or Crocosphaera abundance, indicating that this population was not limited by the resources tested and could develop in high numbers despite the oligotrophic conditions. Our findings indicate that the distribution of Crocosphaera can extend into subtropical gyres and further understanding of their controlling factors is needed.
Assuntos
Cianobactérias , Água do Mar , Cianobactérias/genética , Nitrogênio , Fixação de Nitrogênio/genética , Oceano Pacífico , Fósforo , Água do Mar/microbiologiaRESUMO
A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts.
Assuntos
Ecossistema , Vento , Aerossóis/análise , Atmosfera , Nutrientes , Oceanos e MaresRESUMO
One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.
Assuntos
Atmosfera/química , Microbiota , Água do Mar/microbiologia , ClimaRESUMO
Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.
RESUMO
Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.
Assuntos
Ferro/química , Aerossóis , Oceano Atlântico , Atmosfera/química , Poeira , Óxido Ferroso-Férrico/química , Oceano Índico , Modelos Químicos , Concentração Osmolar , Solo/química , SolubilidadeRESUMO
In the Western Tropical South Pacific, patches of high chlorophyll concentrations linked to the occurrence of N2-fixing organisms are found in the vicinity of volcanic islands. The survival of these organisms relies on a high bioavailable iron supply whose origin and fluxes remain unknown. Here, we measured high dissolved iron (DFe) concentrations (up to 66 nM) in the euphotic layer, extending zonally over 10 degrees longitude (174 E-175 W) at â¼20°S latitude. DFe atmospheric fluxes were at the lower end of reported values of the remote ocean and could not explain the high DFe concentrations measured in the water column in the vicinity of Tonga. We argue that the high DFe concentrations may be sustained by a submarine source, also characterized by freshwater input and recorded as salinity anomalies by Argo float in situ measurements and atlas data. The observed negative salinity anomalies are reproduced by simulations from a general ocean circulation model. Submarine iron sources reaching the euphotic layer may impact nitrogen fixation across the whole region.
RESUMO
The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.
Assuntos
Dióxido de Carbono/química , Poeira , Compostos Orgânicos/química , Polímeros/química , Antiácidos , Concentração de Íons de Hidrogênio , Mar Mediterrâneo , Tamanho da Partícula , Pressão , Água do Mar/químicaRESUMO
The behavior of dissolved cadmium (Cd) in the Danube estuary was investigated through field sampling and mixing experiments using Danube River water and Black Sea water. The experiments were performed by mixing these two end-member waters in various proportions, with the addition of stable or radioactive Cd to the freshwater Danube end-member prior to the mixing. The release of Cd that resulted in maximum concentrations under field conditions was well simulated by mixing experiments. The experimental results were modeled assuming that the release of Cd was the sum of the contribution of physical effects resulting from dilution effects and the contribution of chemical effects resulting from dissolved Cd-complex formation (and isotopic exchange when concerned). In the absence of dissolved Cd-complexing ligands, the release of Cd due to the dilution of the particulate phase during mixing could explain part of the maximum concentrations observed in field conditions. Kinetic effects were established by comparing the theoretical and measured contribution of chemical effects resulting from dissolved Cd-complex formation. The non-equilibrium state observed during the mixing experiment suggested the presence of particulate labile Cd that was not easily mobilized. All these features supported the hypothesis that Cd released in estuaries is controlled both by the dilution of the particulate phase and by kinetic competitive complexation between particulate ligands (covering a large spectrum of nature and strength) and dissolved ligands.